dc.contributor | Revista Sustainability | |
dc.creator | Castrillón Mendoza, Rosaura del Pilar | |
dc.creator | Rey Hernández, Javier M. | |
dc.creator | Rey-Martínez, Francisco Javier | |
dc.date.accessioned | 2021-09-30T17:24:01Z | |
dc.date.accessioned | 2022-09-22T18:50:16Z | |
dc.date.available | 2021-09-30T17:24:01Z | |
dc.date.available | 2022-09-22T18:50:16Z | |
dc.date.created | 2021-09-30T17:24:01Z | |
dc.date.issued | 2020-03-04 | |
dc.identifier | 20711050 | |
dc.identifier | https://hdl.handle.net/10614/13295 | |
dc.identifier | 10.3390/su12051960 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3459461 | |
dc.description.abstract | The main target of climate change policies in the majority of industrialized countries is
to reduce energy consumption in their facilities, which would reduce the carbon emissions that are
generated. Through this idea, energy management plans are developed, energy reduction targets are
established, and energy-efficient technologies are applied to achieve high energy savings, which are
environmentally compatible. In order to evaluate the impact of their operations and investments,
companies promote measures of performance in their energy management plans. An integral part of
measuring energy performance is the establishment of energy baselines applicable to the complete
facility that provide a basis for evaluating energy efficiency improvements and incorporating energy
performance indicators. The implementation of energy management systems in accordance with the
requirements of ISO Standard 50001 is a contribution to the aim and strategies for improving cleaner
production in industries. This involves an option for the industry to establish energy benchmarks to
evaluate performance, predict energy consumption, and align production with the lowest possible
consumption of primary and secondary forms of energy. Ultimately, this goal should lead to the
manufacturing of cleaner products that are environmentally friendly, energy efficient, and are in
accordance with the global environmental targets of cleaner manufacturing. This paper discusses an
alternative for establishing energy baselines for the industrial sector in which several products are
produced from a single raw material, and we determined the energy consumption of each product
and its impact on the overall efficiency of the industry at the same time. The method is applied
to the plastic injection process and the result is an energy baseline (EBL) in accordance with the
requirements of ISO 50001, which serves as a reference for determining energy savings. The EBL
facilitates a reduction in energy consumption and greenhouse gas emissions in sectors such as plastics,
a sector which accounts for 15% of Colombia’s manufacturing GDP | |
dc.language | eng | |
dc.publisher | MDPI | |
dc.publisher | Basel, Switzerland | |
dc.relation | Volumen 12, número 5 (2020) | |
dc.relation | 19 | |
dc.relation | 5 | |
dc.relation | 1 | |
dc.relation | 12 | |
dc.relation | Castrillón Mendoza, R., Rey Hernández, J.M., Rey Martínez, F.J. (2020). Industrial decarbonization by a new energy baseline methodology. Case study. Sustainability. Vol. 12 (5), pp. 1-19. https://doi.org/10.3390/su12051960 | |
dc.relation | Sustainability | |
dc.relation | 1. EU EPBD 2018/844/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32018L0844&from=IT (accessed on 5 October 2019). | |
dc.relation | 2. EU EPBD 2010/31/EU. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex% 3A32010L0031 (accessed on 5 October 2019). | |
dc.relation | 3. EU EPBD 2012/27/EU. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid= 1399375464230&uri=CELEX:32012L0027 (accessed on 5 October 2019). | |
dc.relation | 4. International Energy Agency (IEA). Tracking Industry. Available online: https://www.iea.org/reports/ tracking-industry-2019 (accessed on 5 October 2019). | |
dc.relation | 5. International Energy Agency (IEA). Energy E ciency 2018—Analysis and Outlooks to 2040; International Energy Agency: Paris, France, 2017; pp. 1–143. | |
dc.relation | 6. ISO. ISO Survey 2017. Available online: https://www.iso.org/the-iso-survey.html (accessed on 8 October 2019). | |
dc.relation | 7. Chakraborty, D. Environmental Management Accounting (EMA) and Environmental Reporting in a Resource ConstrainedWorld: Challenges for CMAs. Manag. Account. 2017, 52, 36–42. | |
dc.relation | 8. Dzene, I.; Polikarpova, I.; Zogla, L.; Rosa, M. Application of ISO 50001 for Implementation of Sustainable Energy Action Plans. Energy Procedia 2015, 72, 111–118. [CrossRef] | |
dc.relation | 9. Deloitte LATCO Análisis Económico y de Industrias Latinoamérica La hora de las reformas estructurales. Available online: https://www2.deloitte.com/content/dam/Deloitte/cr/Documents/finance/Deloitte-Analisis- Economico-y-de-Industrias-Latinoamerica.pdf (accessed on 10 October 2019). | |
dc.relation | 10. Wang, H.; Chen, W. Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe. Appl. Energy 2019, 238, 1563–1572. [CrossRef] | |
dc.relation | 11. Barrett, J.; Cooper, T.; Hammond, G.P.; Pidgeon, N. Industrial energy, materials and products: UK decarbonisation challenges and opportunities. Appl. Therm. Eng. 2018, 136, 643–656. [CrossRef] | |
dc.relation | 12. Arce, G. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía, República de Colombia: Bogota, Colombia, 2017. | |
dc.relation | 13. Ley de 1715. Available online: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.htm (accessed on 10 October 2019). | |
dc.relation | 14. International Organization for Standards (ISO). ISO 50001: International Standard, Energy Management Systems—Requirements with Guidance for Use; International Organization for Standards: Geneva, Switzerland, 2011. | |
dc.relation | 15. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; González-González, S.L.; Rey-Martínez, F.J. Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study. Energies 2018, 11, 2979. [CrossRef] | |
dc.relation | 16. Castrillon, R.; González, A.; Ciro, E. Mejoramiento de la eficiencia energética en la industria del cemento por proceso húmedo a través de la implementación del sistema de gestión integral de la energía. Dyna 2013, 80, 115–123. | |
dc.relation | 17. International Energy Agency (IEA). Indicadores de Eficiencia Energética: Bases Esenciales para el Establecimiento de Políticas; International Energy Agency: Paris, France, 2015; p. 182. | |
dc.relation | 18. Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; Rey-Martínez, F.J. Energy analysis at a near zero energy building. A case-study in Spain. Energies 2018, 11, 857. [CrossRef] | |
dc.relation | 19. McKane, A.; Therkelsen, P.; Scodel, A.; Rao, P.; Aghajanzadeh, A.; Hirzel, S.; Zhang, R.; Prem, R.; Fossa, A.; Lazarevska, A.M.; et al. Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy Policy 2017, 107, 278–288. [CrossRef] | |
dc.relation | 20. Kassai, M. Experimental investigation of carbon dioxide cross-contamination in sorption energy recovery wheel in ventilation system. Build. Serv. Eng. Res. Technol. 2018, 39, 463–474. [CrossRef] | |
dc.relation | 21. Kassai, M.; Simonson, C.J. Experimental E ectiveness Investigation of Liquid-to-air Membrane Energy Exchangers under Low Heat Capacity Rates Conditions. Exp. Heat Transf. 2016, 29, 445–455. [CrossRef] | |
dc.relation | 22. Kanneganti, H.; Gopalakrishnan, B.; Crowe, E.; Al-Shebeeb, O.; Yelamanchi, T.; Nimbarte, A.; Currie, K.; Abolhassani, A. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assess. 2017, 23, 121–135. [CrossRef] | |
dc.relation | 23. Pelser,W.A.; Vosloo, J.C.; Mathews, M.J. Results and prospects of applying an ISO 50001 based reporting system on a cement plant. J. Clean. Prod. 2018, 198, 642–653. [CrossRef] | |
dc.relation | 24. Bonacina, F.; Corsini, A.; De Propris, L.; Marchegiani, A.; Mori, F. Industrial Energy Management Systems in Italy: State of the art and perspective. Energy Procedia 2015, 82, 562–569. [CrossRef] | |
dc.relation | 25. Jovanovi´c, B.; Filipovi´c, J.; Baki´c, V. Energy management system implementation in Serbian manufacturing—Plan-Do-Check-Act cycle approach. J. Clean. Prod. 2017, 162, 1144–1156. [CrossRef] | |
dc.relation | 26. Benedetti, M.; Cesarotti, V.; Introna, V. From energy targets setting to energy-aware operations control and back: An advanced methodology for energy e cient manufacturing. J. Clean. Prod. 2017, 167, 1518–1533. [CrossRef] | |
dc.relation | 27. International Organization for Standards (ISO). ISO 50006: Energy Management Systems—Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI)—General Principles and Guidance; International Organization for Standards: Geneva, Switzerland, 2016. | |
dc.relation | 28. Department of Energy (DOE). Steps to Develop a Baseline: A Guide to Developing an Energy Use and Energy. Available online: https://www1.eere.energy.gov/manufacturing/resources/pdfs/leaderbaselinestepsguideline. pdf (accessed on 5 October 2019). | |
dc.relation | 29. Castrillón, R.; Gonzalez, A. Metodología Para la Planificación Energética a Partir de la Norma ISO 50001; Universidad Autónoma de Occidente: Cali, Colombia, 2018; ISBN 978-958-8994-59-8. | |
dc.relation | 30. Castrillón, R.; Quispe, E.C.; Gonzalez, A.; Urhan, M.; Fandiño, D. Metodología Para la Implementación del Sistema de Gestión Integral de la Energía. Fundamentos y Casos Prácticos; Universidad Autónoma de Occidente: Cali, Colombia, 2015; ISBN 9789588713540. | |
dc.relation | 31. The Northwest Energy E ciency Alliance (NEEEA). Energy Baseline Methodologies for Industrial Facilities, 1st ed.; The Northwest Energy E ciency Alliance: Portland, OR, USA, 2011. | |
dc.relation | 32. Gómez-Calvet, R.; Conesa, D.; Gómez-Calvet, A.R.; Tortosa-Ausina, E. Energy e ciency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures? Appl. Energy 2014, 132, 137–154. [CrossRef] | |
dc.relation | 33. Morvay, Z.K.; Gvozdenac, D.D. Applied Industrial Energy and Environmental Management; John Wiley & Son: Hoboken, NJ, USA, 2009; ISBN 9780470697429. | |
dc.relation | 34. Bogetoft, P.; Otto, L. Benchmarking with DEA, SFA, and R; Springer: Berlin, Germany, 2011; ISBN 978-1-4419-7961-2. | |
dc.relation | 35. Sakamoto, T.; Takase, K.; Matsuhashi, R.; Managi, S. Baseline of the projection under a structural change in energy demand. Energy Policy 2016, 98, 274–289. [CrossRef] | |
dc.relation | 36. Marina Domingo, A.M.; Rey-Hernández, J.M.; San José Alonso, J.F.; Crespo, R.M.; Rey Martínez, F.J. Energy e ciency analysis carried out by installing district heating on a university campus. A case study in Spain. Energies 2018, 11, 2826. [CrossRef] | |
dc.relation | 37. Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-Generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [CrossRef] | |
dc.relation | 38. Sagastume Gutiérrez, A.; Cabello Eras, J.J.; Sousa Santos,V.; Hernández Herrera, H.; Hens, L.; Vandecasteele, C. Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. J. Clean. Prod. 2018, 198, 1443–1458. [CrossRef] | |
dc.relation | 39. Prias, O.; Campos, J.; Rojas, D.; Palencia, A. Implementación de un Sistestema de Gestión de la Energía. Guía con Base en ISO50001. 2013. Available online: http://reciee.com/pdf/2013%20-%20Implementaci%C3%B3n%20SGIE,%20Gu%C3%ADa%20con%20Base%20ISO%2050001%20(1).pdf (accessed on 15 October 2019). | |
dc.relation | 40. Allaire, J.J.; Team, R.C. RStudio IDE for R. Available online: https://rstudio.com/ (accessed on 19 December 2019). | |
dc.relation | 41. Vargas Isaza, C.A. Consumo de Energía en la Industria del Plástico: Revisión de Estudios Realizados; Instituto Tecnológico Metropolitano: Medellín, Colombia, 2015; Volume 1. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - MDPI, 2020 | |
dc.subject | Norma ISO 50001 | |
dc.title | Industrial decarbonization by a new energy baseline methodology. Case study | |
dc.type | Artículo de revista | |