dc.source | [1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A.
Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a
bubbly co-lumn two-phase flow by ultrasound and neural networks,” in
Proceedings of the 2011 International Nuclear Atlantic Conference - INAC
2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação
Brasileira de Energia Nuclear
- ABEN, 2011.
[2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in
two phase flow by electrical conductance probe,” International Journal of
Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea].
Disponible en : http://www.sciencedirect.com/science/article/
pii/0301932280900014
[3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for
the measurement of liquid hold-up in two-phase flow,” International Journal
of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea].
Disponible en http://www.sciencedirect.com/science/article/
pii/0301932288900742
[4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction
measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase
flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M.
Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1984, pp. 319–335.
[5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an
ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143
– 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/
science/article/pii/002954939090203A
[6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle
flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012.
[7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization
of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium.
Proceedings. International Symposium (Cat. No.99CH37027), vol. 1,
Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing.
Englewood Cliff: Prentice-Hall, 1987.
[9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating
Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical
Sciences, vol. 23, pp. 453 – 461, 00 2001.
[10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization
of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en
linea]. Disponible en : http://www.sciencedirect.com/science/article/
pii/0041624X90900934
[11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement
of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical
Review, vol. 75, no. 6, pp. 936–946, 1949.
[12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement
of newtonian liquids using the complex reflection coefficient,” IEEE
Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55,
no. 10, pp. 2247–2253, 2008.
[13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic
frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53,
November 2004.
[14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement
using the shear-wave reflection coefficient with a novel signal processing
technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control,
vol. 57, no. 5, pp. 1133–1139, 2010.
[15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry
applied to the determination of the shear moduli and viscosity of a
viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea.
Disponible en : http://www.sciencedirect.com/science/article/pii/
S0016236118310202
[16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the
mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry,
vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh,
“High temperature ultrasonic sensor for the simultaneous measurement of viscosity
and temperature of melts,” Review of Scientific Instruments, vol. 70,
no. 12, pp. 4618–4623, 1999.
[18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity:
Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 –
219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/
article/pii/S0041624X17308016
[19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures
by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical
Sciences, Springer, 1993.
[20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner,
“Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial
& Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999.
[en linea]. Disponible en : https://doi.org/10.1021/ie970932k
[21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for
bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60
– 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/
article/pii/S0041624X09000845
[22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation
and speed of sound of cornstarch suspensions,” The Journal of the Acoustical
Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea].
Disponible en : https://doi.org/10.1121/1.4789926
[23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic
spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72,
no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http://
www.sciencedirect.com/science/article/pii/S0003682X10002689
[24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound
attenuation and phase velocity of micrometer-sized particle suspensions
with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178,
2018, ultrasonic advances applied to materials science. [en linea].
Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran-
Cong-Miyata, “Sound velocity and attenuation coefficient of hard and
hollow microparticle suspensions observed by ultrasound spectroscopy,”
Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible:
http: //www.sciencedirect.com/science/article/pii/S0041624X15001353
[26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a
model food gel containing bubbles and solid inclusions using ultrasound,” Soft
Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http://
dx.doi.org/10. 1039/B706886G
[27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements
of toluene–water dispersions hold-up using a non-invasive ultrasonic
technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006.
[28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop
distribution determination in a liquid-liquid dispersion by image processing,” International
Journal of Chemical Engineering, 2009.
[29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular
Biology, vol. 93, pp. 3–83, 2007.
[30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of
Acoustics. Wiley, 1999.
[31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed.
New Jersey: Prentice Hall & IBD, 1998.
[32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11,
no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http://
www.sciencedirect.com/science/article/pii/0041624X7390231X
[33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid
contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003. | |