dc.contributorFranco Guzmán, Ediguer Enrique
dc.creatorHenao Santa, Sebastián
dc.date.accessioned2019-12-16T21:58:29Z
dc.date.accessioned2022-09-22T18:49:50Z
dc.date.available2019-12-16T21:58:29Z
dc.date.available2022-09-22T18:49:50Z
dc.date.created2019-12-16T21:58:29Z
dc.date.issued2019-11-20
dc.identifierhttp://red.uao.edu.co//handle/10614/11743
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3459336
dc.description.abstractThis work shows the development of an experimental setup to study the effect of bubbles on the Fourier spectrum of ultrasonic waves. 262/5000 Two water columns were designed and built in order to generate a two-phase water-bubble flow, and they were also instrumented with ultrasonic transducers to perform measurements in pulse-echo, transmission-reception and backscattering modes. The transducers were characterized, selecting those with the best frequency response. Experiments were performed in the range between 0;5 and 5;0 MHZ. From the ultrasonic signals a loss coefficient was calculated. This coefficient models the drop in amplitude of the waves as a result of the presence of the bubbles, with respect to the a reference case without bubbles. The loss coefficient allowed the calculation of the velocity and attenuation spectra. In order to estimate the radius and number of bubbles, as a function of the amount of air injected, image processing techniques were applied. This was made taking into account the acoustic field generated by each transducer. The results showed that the changes obtained in the acoustic parameters of the waves allow to infere of the amount of bubbles
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Mecatrónica
dc.publisherDepartamento de Automática y Electrónica
dc.publisherFacultad de Ingeniería
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.source[1] D. B. Baroni, J. S. C. Filho, C. A. Lamy, M. S. Q. Bittencourt, C. M. N. A. Pereira, and M. S. Motta, “Determination of size distribution of bubbles in a bubbly co-lumn two-phase flow by ultrasound and neural networks,” in Proceedings of the 2011 International Nuclear Atlantic Conference - INAC 2011. Belo Horizon-te,MG, Brazil, October 24-28, 2011: Associação Brasileira de Energia Nuclear - ABEN, 2011. [2] D. Barnea, O. Shoham, and Y. Taitel, “Flow pattern characterization in two phase flow by electrical conductance probe,” International Journal of Multiphase Flow, vol. 6, no. 5, pp. 387 – 397, 1980. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0301932280900014 [3] P. Andreussi, A. D. Donfrancesco, and M. Messia, “An impedance method for the measurement of liquid hold-up in two-phase flow,” International Journal of Multiphase Flow, vol. 14, no. 6, pp. 777 – 785, 1988. [en linea]. Disponible en http://www.sciencedirect.com/science/article/ pii/0301932288900742 [4] J. S. Chang, Y. Ichikawa, G. A. Irons, E. C. Morala, and P. T. Wan, “Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid twophase flow,” in Measuring Techniques in Gas-Liquid Two-Phase Flows, J. M. Delhaye and G. Cognet, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 319–335. [5] J. S. Chang and E. Morala, “Determination of two-phase interfacial areas by an ultrasonic technique,” Nuclear Engineering and Design, vol. 122, no. 1, pp. 143 – 156, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/ science/article/pii/002954939090203A [6] B. M. Wrobel, “Ultrasonic measurement and characterization of liquid-particle flow,” Ph.D. dissertation, University of Stavanger, Norway, 2012. [7] R. T. Higuti, E. Bacaneli, C. M. Furukawa, and J. C. Adamowski, “Ultrasonic characterization of emulsions: milk and water in oil,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), vol. 1, Oct 1999, pp. 779–782 vol.1[8] G. S. Kino, Acoustic waves: devices, imaging and analog signal processing. Englewood Cliff: Prentice-Hall, 1987. [9] R. T. Higuti, C. M. Furukawa, and J. C. Adamowski, “Characterization of Lubricating Oil Using Ultrasound,” Journal of the Brazilian Society of Mechanical Sciences, vol. 23, pp. 453 – 461, 00 2001. [10] D. McClements, M. Povey, M. Jury, and E. Betsanis, “Ultrasonic characterization of a food emulsion,” Ultrasonics, vol. 28, no. 4, pp. 266 – 272, 1990. [en linea]. Disponible en : http://www.sciencedirect.com/science/article/ pii/0041624X90900934 [11] W. P. Mason, W. O. Baker, J. M. McSkimin, and J. H. Heiss, “Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies,” Physical Review, vol. 75, no. 6, pp. 936–946, 1949. [12] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [13] R. Saggin and J. N. Coupland, “Rheology of xanthan/sucrose mixtures at ultrasonic frequencies,” Journal of Food Engineering, vol. 65, no. 1, pp. 49–53, November 2004. [14] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [15] A. Rabbani and D. R. Schmitt, “Ultrasonic shear wave reflectometry applied to the determination of the shear moduli and viscosity of a viscoelastic bitumen,” Fuel, vol. 232, pp. 506 – 518, 2018. [en linea. Disponible en : http://www.sciencedirect.com/science/article/pii/ S0016236118310202 [16] Y. S. Lee, S. L. Golub, and G. H. Brown, “Ultrasonic shear wave study of the mechanical properties of a nematic liquid crystal,” The Journal of Physical Chemistry, vol. 76, no. 17, pp. 2409–2417, 1972.[17] K. Balasubramaniam, V. Shah, R. D. Costley, G. Bourdreaux, and J. P. Singh, “High temperature ultrasonic sensor for the simultaneous measurement of viscosity and temperature of melts,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4618–4623, 1999. [18] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [Online]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X17308016 [19] A. L., “Ultrasonic spectroscopy,” in The Evaluation of Materials and Structures by Quantitative Ultrasonics. Vienna: CISM International Centre for Mechanical Sciences, Springer, 1993. [20] Y. Soong, I. K. Gamwo, A. G. Blackwell, F. W. Harke, and E. P. Ladner, “Ultrasonic characterizations of slurries in a bubble column reactor,” Industrial & Engineering Chemistry Research, vol. 38, no. 5, pp. 2137–2143, 1999. [en linea]. Disponible en : https://doi.org/10.1021/ie970932k [21] G. T. Yim and T. G. Leighton, “Real-time on-line ultrasonic monitoring for bubbles in ceramic ‘slip’ in pottery pipelines,” Ultrasonics, vol. 50, no. 1, pp. 60 – 67, 2010. [en linea]. Disponible en : http://www.sciencedirect.com/science/ article/pii/S0041624X09000845 [22] B. L. Johnson, M. R. Holland, J. G. Miller, and J. I. Katz, “Ultrasonic attenuation and speed of sound of cornstarch suspensions,” The Journal of the Acoustical Society of America, vol. 133, no. 3, pp. 1399–1403, 2013. [en linea]. Disponible en : https://doi.org/10.1121/1.4789926 [23] B. M. Wrobel and R. W. Time, “Improved pulsed broadband ultrasonic spectroscopy for analysis of liquid-particle flow,” Applied Acoustics, vol. 72, no. 6, pp. 324 – 335, 2011. [en linea]. Disponible en : http:// www.sciencedirect.com/science/article/pii/S0003682X10002689 [24] H. Mori, T. Norisuye, H. Nakanishi, and Q. Tran-Cong-Miyata, “Ultrasound attenuation and phase velocity of micrometer-sized particle suspensions with viscous and thermal losses,” Ultrasonics, vol. 83, pp. 171 – 178, 2018, ultrasonic advances applied to materials science. [en linea]. Disponible en :http://www.sciencedirect.com/science/article/pii/S0041624X16304346[25] K. Kubo, T. Norisuye, T. N. Tran, D. Shibata, H. Nakanishi, and Q. Tran- Cong-Miyata, “Sound velocity and attenuation coefficient of hard and hollow microparticle suspensions observed by ultrasound spectroscopy,” Ultrasonics, vol. 62, pp. 186 – 194, 2015. [en linea]. Disponible: http: //www.sciencedirect.com/science/article/pii/S0041624X15001353 [26] A. Strybulevych, V. Leroy, M. G. Scanlon, and J. H. Page, “Characterizing a model food gel containing bubbles and solid inclusions using ultrasound,” Soft Matter, vol. 3, pp. 1388–1394, 2007. [en linea]. Disponible: http:// dx.doi.org/10. 1039/B706886G [27] M. Ribeiro, C. Gonçalves, P. Regueiras, M. Guimarães, and J. Cruz Pinto, “Measurements of toluene–water dispersions hold-up using a non-invasive ultrasonic technique,” Chemical Engineering Journal, vol. 118, pp. 47–54, 05 2006. [28] M. M. M. R. Luís M. R. Brás, Elsa F. Gomes and M. M. L. Guimarães, ““drop distribution determination in a liquid-liquid dispersion by image processing,” International Journal of Chemical Engineering, 2009. [29] T. G. Leighton, “What is ultrasound? (review),” Progress in Biophysics and Molecular Biology, vol. 93, pp. 3–83, 2007. [30] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. Wiley, 1999. [31] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Señales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998. [32] A. Brown, “Materials testing by ultrasonic spectroscopy,” Ultrasonics, vol. 11, no. 5, pp. 202 – 210, 1973. [en linea]. Disponible: http:// www.sciencedirect.com/science/article/pii/0041624X7390231X [33] A. H. G. Cents, “Mass transfer and hydrodynamics in stirred gas-liquid-liquid contactors,” Ph.D. dissertation, Universiteit Twente, 7 2003.
dc.subjectIngeniería Mecatrónica
dc.subjectUltrasonido
dc.subjectFlujo bifásico
dc.subjectBurbujas
dc.subjectEspectro de atenuación
dc.subjectEspectro de velocidad
dc.subjectUltrasonido
dc.subjectTwo-phase flow
dc.titleDiseño y construcción de un montaje experimental para el estudio del efecto de las burbujas sobre el espectro de fourier de ondas ultrasónicas en flujos bifásicos
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución