dc.creator | Quintero, Jaime | |
dc.creator | Posada, Johnny | |
dc.creator | Lopez Sotelo, Jesus Alfonso | |
dc.creator | Oñate Portilla, Servio Marcelo | |
dc.creator | Aredes, Mauricio | |
dc.date.accessioned | 2019-11-01T20:56:53Z | |
dc.date.accessioned | 2022-09-22T18:49:47Z | |
dc.date.available | 2019-11-01T20:56:53Z | |
dc.date.available | 2022-09-22T18:49:47Z | |
dc.date.created | 2019-11-01T20:56:53Z | |
dc.date.issued | 2018-02-21 | |
dc.identifier | Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005 | |
dc.identifier | 1751-8687 | |
dc.identifier | http://hdl.handle.net/10614/11384 | |
dc.identifier | 10.1049/iet-gtd.2017.0093 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3459314 | |
dc.description.abstract | This study presents an innovative approach where both sides of a back-to-back (BtB) system are controlled using the synchronverter approach, allowing to control the power transfer through the converters as it would be in a real motor–generator pair system. A novel way to transfer the DC voltage control loop in the BtB converter is proposed, letting to a softer and less noisy power transferring, as shown in simulation results. The modelling equations of the synchronverter and the traditional dq frame in a BtB converter are presented in this work. In addition, a comparison between these two control approaches using three different performance indexes is done, showing that the power transfer behaviour using the synchronverter approach is significantly improved. Finally, the ability of the BtB converter working as a power balancer system (PBS) to manage congestion between two distribution networks in a test bed case is tested. Results show that it is possible to obtain the PBS power quality benefits without the additional phase-locked loop units and the decoupling process, necessary with the dq frame, resulting in a simpler controller design | |
dc.language | eng | |
dc.publisher | The Institution of Engineering and Technology, IET | |
dc.relation | 2005 | |
dc.relation | 9 | |
dc.relation | 1998 | |
dc.relation | 12 | |
dc.relation | Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005. https://doi.org/10.1049/iet-gtd.2017.0093 | |
dc.relation | IET Generation, Transmission and Distribution | |
dc.relation | [1] Guerrero, J.M., Vasquez, J.C., Matas, J., et al.: ‘Hierarchical control of droopcontrolled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158–172 | |
dc.relation | [2] Lu, X., Sun, K., Guerrero, J.M., et al.: ‘State-of-charge balance using adaptive
droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 2804–2815 | |
dc.relation | [3] Van, T.V., Visscher, K., Diaz, J., et al.: ‘Virtual synchronous generator: an element of future grids’. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 1–7 | |
dc.relation | [4] Ashabani, M.: ‘Synchronous converter and synchronous-VSC-state of art of universal control strategies for smart grid integration’. Presented at the Smart Grid Conf. (SGC), 2014, pp. 1–8 | |
dc.relation | [5] Han, Y., Li, H., Shen, P., et al.: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 2427–2451 | |
dc.relation | [6] Zhang, W., Remon, D., Mir, A., et al.: ‘Comparison of different power loop controllers for synchronous power controlled grid-interactive converters’. Presented at the IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3780–3787 | |
dc.relation | [7] Benysek, G., Kazmierkowski, M., Popczyk, J., et al.: ‘Power electronic systems as a crucial part of smart grid infrastructure – a survey’, Bull. Pol. Acad. Sci. Tech. Sci., 2011, 59, (4), pp. 1–14 | |
dc.relation | [8] Strzelecki, R. M., Benysek, G. (eds.): Power electronics in smart electrical energy networks (Springer London, London, 2008) | |
dc.relation | [9] Herskind, C.C.: ‘Grid controlled rectifiers and inverters’, Trans. Am. Inst. Electr. Eng., 1934, 53, (6), pp. 926–935 | |
dc.relation | [10] Cramer, F.W., Morton, L.W., Darling, A.G.: ‘The electronic converter for exchange of power’, Trans. Am. Inst. Electr. Eng., 1944, 63, (12), pp. 1059–1069 | |
dc.relation | [11] Noroozian, M., Edris, A.-A., Kidd, D., et al.: ‘The potential use of voltagesourced converter-based back-to-back tie in load restorations’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 1416–1421 | |
dc.relation | [12] Belloni, F., Chiumeo, R., Gandolfi, C., et al.: ‘Application of back-to-back converters in closed-loop and meshed MV distribution grid’. Presented at the AEIT Annual Conf. – from Research to Industry: the Need for a More Effective Technology Transfer, 2014, pp. 1–6 | |
dc.relation | [13] Holliday, D., Adam, G.P., Williams, B.W., et al.: ‘Modified back-to-back current source converter and its application to wind energy conversión systems’, IET Power Electron., 2015, 8, (1), pp. 103–111 | |
dc.relation | [14] Peyghami, S., Davari, P., Mokhtari, H., et al.: ‘Synchronverter-enabled DC power sharing approach for LVDC microgrids’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 8089–8099 | |
dc.relation | [15] Serban, I., Ion, C.P.: ‘Microgrid control based on a grid-forming invertir operating as virtual synchronous generator with enhanced dynamic response capability’, Int. J. Electr. Power Energy Syst., 2017, 89, (Suppl. C), pp. 94–105 | |
dc.relation | [16] Restrepo, A.J., Aller, J.M., Bueno, A., et al.: ‘Direct power control of a dual converter operating as a synchronous rectifier’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 1410–1417 | |
dc.relation | [17] Liu, J., Yao, L., Tian, D., et al.: ‘Study on the fuzzy control strategy based on back-to-back micro grid connection’. Presented at the Asia-Pacific Power and Energy Engineering Conf., 2012, pp. 1–5 | |
dc.relation | [18] Alcala, J., Cardenas, V., Rosas, E., et al.: ‘Control system design for bidirectional power transfer in single-phase back-to-back converter based on the linear operating region’. Presented at the Applied Power Electronics Conf. and Exposition (APEC), 2010, pp. 1651–1658 | |
dc.relation | [19] Alcala, J., Cardenas, V., Ramirez-Lopez, A.R., et al.: ‘Study of the bidirectional power flow in back - to - back converters by using linear and nonlinear control strategies’. Presented at the IEEE Energy Conversion Congress and Exposition, 2011, pp. 806–813 | |
dc.relation | [20] Brown, E., Weiss, G.: ‘Using synchronverters for power grid stabilization’. Presented at the IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2014, pp. 1–5 | |
dc.relation | [21] van Emmerik, E.L., França, B.W., Aredes, M.: ‘A synchronverter to damp electromechanical oscillations in the Brazilian transmission grid’. Presented at the IEEE 24th Int. Symp. Industrial Electronics (ISIE), 2015, pp. 221–226 | |
dc.relation | [22] Zhong, Q.C.: ‘Power-electronics-enabled autonomous power systems: architecture and technical routes’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5907–5918 | |
dc.relation | [23] Dong, D., Wen, B., Boroyevich, D., et al.: ‘Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 310–321 | |
dc.relation | [24] França, B.W., de Castro, A.R., Aredes, M.: ‘Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter’. Presented at the IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf. (COBEP/SPEC), 2015, pp. 1–6 | |
dc.relation | [25] Zhong, Q.-C., Ma, Z., Ming, W.-L., et al.: ‘Grid-friendly wind power systems based on the synchronverter technology’, Energy Convers. Manag., 2015, 89, pp. 719–726 | |
dc.relation | [26] Carlsson, A.: ‘The back-to-back converter - theory and design’ (IEA – Lund University, Sweden, 1998) | |
dc.relation | [27] Parkhideh, B., Bhattacharya, S.: ‘A practical approach to controlling the backto-back voltage source converter system’. Presented at the 34th Annual Conf. IEEE Industrial Electronics, 2008 (IECON 2008), 2008, pp. 514–519 | |
dc.relation | [28] Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F., et al.: ‘Control in power electronics: selected problems’ (Academic Press, Amsterdam, New York, 2002) | |
dc.relation | [29] Sensarma, P.S., Padiyar, K.R., Ramanarayanan, V.: ‘Analysis and performance evaluation of a distribution STATCOM for compensating voltaje fluctuations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 259–264 | |
dc.relation | [30] Voraphonpiput, N., Chatratana, S.: ‘STATCOM analysis and controller design for power system voltage regulation’. 2005 IEEE/PES Transmission Distribution Conf. Exposition: Asia and Pacific, 2005, pp. 1–6 | |
dc.relation | [31] Nguyen, P.-L., Zhong, Q.-C., Blaabjerg, F., et al.: ‘Synchronverter-based
operation of STATCOM to mimic synchronous condensers’, 2012, pp. 942–947 | |
dc.relation | [32] Beck, H.-P., Hesse, R.: ‘Virtual synchronous machine’. Presented at the 9th Int. Conf. Electrical Power Quality and Utilisation, 2007, pp. 1–6 | |
dc.relation | [33] Turschner, D., Hesse, R.: ‘Potentialities of the virtual synchronous machine (VISMA) to improve the quality of the electrical grid’, 10 October 2008. Available at http://www.vsync.eu/project/workshops/workshop1/, accessed 24 September 2016 | |
dc.relation | [34] Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. Presented at the Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–3 | |
dc.relation | [35] Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 244–254 | |
dc.relation | [36] Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1259–1267 | |
dc.relation | [37] Zhong, Q.-C., Nguyen, P.-L.: ‘Sinusoid-locked loops based on the principles of synchronous machines’. Presented at the 24th Chinese Control and Decision Conf. (CCDC), 2012, pp. 1518–1523 | |
dc.relation | [38] Zhong, Q.C., Nguyen, P.L., Ma, Z., et al.: ‘Self-Synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617–630 | |
dc.relation | [39] Alcala, J.: ‘Estudio de convertidores back-to-back’ (Universidad Autónoma de San Luis Potosí, San Luis Potosí, 2012) | |
dc.relation | [40] Khalil, H.K.: ‘Nonlinear Systems’ (Prentice Hall, New Jersey, 1996, 2nd edn.) | |
dc.relation | [41] Messina, A.R. (ed.): Inter-area oscillations in power systems (Springer US, Boston, MA, 2009) | |
dc.relation | [42] Piya, P., Karimi-Ghartemani, M.: ‘A stability analysis and efficiency improvement of synchronverter’. In 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), 2016, pp. 3165–3171 | |
dc.relation | [43] Natarajan, V., Weiss, G.: ‘Synchronverters with better stability due to virtual inductors, virtual capacitors, and anti-windup’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5994–6004 | |
dc.relation | [44] Simanjorang, R., Miura, Y., Ise, T., et al.: ‘Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines’. Presented at the Power Conversion Conf., 2007, Nagoya, pp. 997–1004 | |
dc.relation | [45] Alcalá, J., Cárdenas, V., Pérez-Ramírez, J., et al.: ‘Improving power flow in transformers using a BTB converter to balance low voltage feeders’. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 2038–2044 | |
dc.relation | [46] Choudhary, N.P., Pote, X.R.: ‘Controlling of back to back converter for load sharing in microgrid and utility grid’. Presented at the Third Int. Conf. Advances in Computing and Communications (ICACC), 2013, pp. 287–291 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos Reservados - Universidad Autónoma de Occidente | |
dc.title | Control of a back-to-back converter as a power transfer system using synchronverter approach | |
dc.type | Artículo de revista | |