dc.creatorRojas Arciniegas, Alvaro José
dc.creatorHidalgo Salazar, Miguel Angel
dc.creatorMontalvo Navarrete, Jorge Ivan
dc.creatorEscobar Núnez, Emerson
dc.date.accessioned2019-10-08T18:24:54Z
dc.date.accessioned2022-09-22T18:49:46Z
dc.date.available2019-10-08T18:24:54Z
dc.date.available2022-09-22T18:49:46Z
dc.date.created2019-10-08T18:24:54Z
dc.date.issued2018
dc.identifier1955-2505 (en línea)
dc.identifier1955-2513 (impresa)
dc.identifierhttp://hdl.handle.net/10614/11178
dc.identifierhttps://doi.org/10.1007/s12008-017-0411-2
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3459309
dc.description.abstractResearch on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (developed by twin screw extrusion) were further used in AM by fused deposition modeling (FDM) to obtain testing samples for the characterization of the tensile and flexural properties through mechanical testing. Tensile and flexural mechanical properties of the composite material obtained by AM-FDM were compared against those obtained by injection molding. Experimental results showed that samples obtained with a percentage of 20% of wood flour showed lower mechanical properties, while those obtained at 30% testing samples turned very brittle. Mechanical properties like flexural stiffness were higher in the testing samples obtained by injection molding compared to those by AMFDM. To understand the thermal behavior of the composites, specimens were subjected to TGA experimentation. Experimental results show an analysis of the optimum temperatures for processing the composites through AM, and provide evidence that these composites could potentially be applied in the design of auto parts due to their biodegradability and mechanical strength
dc.languageeng
dc.publisherSpringer
dc.relation458
dc.relationNúmero 2
dc.relation449
dc.relationVolumen 12
dc.relationMontalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), (2), 449-458
dc.relationInternational Journal on Interactive Design and Manufacturing (IJIDeM)
dc.relation1. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008)
dc.relation2. Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)
dc.relation3. Ashori, A.: Wood–plastic composites as promising greencomposites for automotive industries. Bioresour. Technol. 99(11), 4661–4667 (2008)
dc.relation4. Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P., Craeghs, T.: Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys. Procedia 5, 617–622 (2010)
dc.relation5. Carroll, D.R., Stone, R.B., Sirignano, A.M., Saindon, R.M., Gose, S.C., Friedman, M.A.: Structural properties of recycled plastic/sawdust lumber decking planks. Resour. Conserv. Recycl. 31(3), 241–251 (2001)
dc.relation6. Coutinho, F., Costa, T.H., Carvalho, D.L.: Polypropylene–Wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65(6), 1227–1235 (1997)
dc.relation7. D’Almeida, A.L.F.S., Barreto, D.W., Calado, V., D’Almeida, J.R.M.: Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 91(2), 405–408 (2008)
dc.relation8. Dittenber, D.B., GangaRao, H.V.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43(8), 1419–1429 (2012)
dc.relation9. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 37(10), 1660–1671 (2006)
dc.relation10. Gronli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)
dc.relation11. Hidalgo-Salazar, M.A., Muñoz, M.F., Mina, J.H.: Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 8 (2015). doi:10.1155/2015/386325
dc.relation12. Hidalgo-Salazar,M.A., Mina, J.H., Herrera-Franco, P.J.: The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. B Eng. 55, 345–351 (2013)
dc.relation13. Hidalgo-Salazar, M.A., Muñoz, M.F., Quintana, K.: Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales 2(1), 187–194 (2011)
dc.relation14. Jeske, H., Schirp, A., Cornelius, F.: Development of a thermogravimetric analysis (TGA) method for quantitative analysis of Wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 543(10), 165–171 (2012)
dc.relation15. Kaboorani, A.: Effects of formulation design on thermal properties of wood/thermoplastic composites. J. Compos. Mater. 44, 2205–2215 (2010)
dc.relation16. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A Appl. Sci. Manuf. 42(6), 579–588 (2011)
dc.relation17. Leao, A., Rowell, R., Tavares, N.: Applications of natural fibers in automotive industry in Brazil-thermoforming process. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds.) Science and Technology of Polymers and Advanced Materials, pp. 755–761. Springer, Boston (1998)
dc.relation18. Marsh, G.: Natural alternative. Reinf. Plast. 43(3), 42–46 (1999)
dc.relation19. MatterHackers: Light Cherry Wood LAYWOO-D3 Filament. (2014). http://www.matterhackers.com/store/3d-printer-filament/
dc.relation175~mm-wood-filament-light-cherry-0.25-kg
dc.relation20. Montalvo, J.I., Hidalgo, M.A.: 3D printing with natural reinforced filaments. In: Solid Freeform Fabrication (SFF) Symposium, pp. 922–934. University of Texas at Austin (2015)
dc.relation21. Monteiro, S.N., Calado,V.,Rodriguez, R.J.S., Margem, F.M.: Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Tech 1(2), 117–126 (2012). doi:10.1016/S2238-7854(12)70021-2
dc.relation22. Netravali, A.N., Chabba, S.: Composites get greener.Mater. Today 6(4), 22–29 (2003)
dc.relation23. Noorani, R.: Rapid Prototyping—Principles and Applications. Wiley, New York (2006)
dc.relation24. Olakanmi, E.O., Strydom, M.J.: Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Mater. Chem. Phys. 171(1), 290–302 (2016)
dc.relation25. Órfão, J.J.M., Figueiredo, J.L.: A simplifiedmethod for determination of lignocellulosic materials purolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 380(1), 67–78 (2001)
dc.relation26. Savalani,M.: Control of selective laser sintering and selective laser melting processes. Doctoral dissertation, Ph.D. thesis, Selective laser sintering of hydroxyapatite-polyamide composites, Loughborough University (2006)
dc.relation27. Shebani, A.N., van Reenen,A.J., Meincken,M.: The effect ofwood extractives on the thermal stability of different wood species. Thermochim. Acta 471(1), 43–50 (2008)
dc.relation28. Thomas, S., Photan, L.A.: Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale. Old City Publishing, Philadelphia (2009)
dc.relation29. Wong, K.V., Hernandez, A.: A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, pp. 1–10 (2012). doi:10.5402/2012/208760
dc.relation30. Yang, M.Y., Ryu, S.G.: Development of a composite suitable for rapid prototype machining. J. Mater. Process. Technol. 113(3), 280–284 (2001)
dc.relation31. Yao, F., Wu, Q., Le, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1), 90–98 (2008)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleThermal and mechanical behavior of biocomposites using additive manufacturing
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución