dc.creatorJauregui-Vazquez, Daniel
dc.creatorGutiérrez Rivera, M. E.
dc.creatorGarcia Mina, Diego Felipe
dc.creatorSierra Hernández, Juan. M.
dc.creatorGallegos-Arellano, Eloisa
dc.creatorEstudillo-Ayala, Julián Moisés
dc.creatorHernández García, José C.
dc.creatorRojas-Laguna, Roberto
dc.date.accessioned2022-05-20T14:37:43Z
dc.date.available2022-05-20T14:37:43Z
dc.date.created2022-05-20T14:37:43Z
dc.date.issued2021-04
dc.identifier3068919
dc.identifierhttps://hdl.handle.net/10614/13898
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.description.abstractAn experimental study of the interaction between a Mylar® polymer flm and a multimode fber-optic is presented for the simultaneous fber-optic detection of low-pressure and liquid levels. The junction between the polymer and optical fber produces an interference spectrum with maximal visibility and free spectral range around 9 dB and 31 nm, respectively. Water pressure, which is controlled by the liquid level, stresses the polymer. As a result, the spectrum wavelength shifts to the blue region, achieving high sensitivities around 2.49 nm/kPa and 24.5 nm/m. The polymeric membrane was analyzed using a fnite element model; according to the results, the polymer shows linear stress response. Furthermore, the membrane material is operated below the yielding point. Moreover, the fnite analysis provides information about the stress efect over the thickness and the birefringence changes. This sensor exhibits a quadratic polynomial ftting with an adjusted R-squared of 0.9539. The proposed sensing setup ofers a cost-efective alternative for liquid level and low-pressure detection
dc.languageeng
dc.publisherSpringer
dc.relation12
dc.relation237
dc.relation1
dc.relation53
dc.relationD. Jauregui Vázquez. M. E. Gutiérrez Rivera. D. F. García Mina. J. M. Sierra Hernández. E. Gallegos Arellano. J. M. Estudillo Ayala. Juan C. Hernández García. R. Rojas Laguna. (2021). Low pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity. Optical and Quantum Electronics, pp. 1-12. https://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdf
dc.relationOptical and Quantum Electronics
dc.relationAbeysinghe, D.C., Dasgupta, S., Boyd, J.T., Jackson, H.E.: A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photonics Technol. Lett. 13, 993–995 (2001). https:// doi. org/ 10. 1109/ 68. 942671
dc.relationAmeen, O.F., Younus, M.H., Aziz, M.S., Azmi, A.I., Raja Ibrahim, R.K., Ghoshal, S.K.: Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sensors Actuators A Phys. 252, 225–232 (2016). https:// doi. org/ 10. 1016/j. sna. 2016. 10. 018
dc.relationAntonio-Lopez, J.E., Sanchez-Mondragon, J.J., LiKamWa, P., May-Arrioja, D.A.: Fiber-optic sensor for liquid level measurement. Opt. Lett. 36, 3425–3427 (2011). https:// doi. org/ 10. 1364/ OL. 36. 003425
dc.relationBai, Y., Yan, F., Liu, S., Wen, X.: All fiber Fabry–Pérot interferometer for high-sensitive micro-displacement sensing. Opt. Quantum Electron. 48, 1–10 (2016). https:// doi. org/ 10. 1007/ s11082- 015- 0323-y
dc.relationCastellani, C.E.S., Ximenes, H.C.B., Silva, R.L., Frizera-Neto, A., Ribeiro, M.R.N., Pontes, M.J.: Multiparameter interferometric sensor based on a reduced diameter core axial offseted fiber. IEEE Photonics Technol. Lett. 29, 239–242 (2017). https:// doi. org/ 10. 1109/ LPT. 2016. 26378 70
dc.relationChen, W.P., Wang, D.N., Xu, B., Zhao, C.L., Chen, H.F.: Multimode fiber tip Fabry–Perot cavity for highly sensitive pressure measurement. Sci. Rep. 7, 1–6 (2017). https:// doi. org/ 10. 1038/ s41598- 017- 00300-x
dc.relationDiáz, C.A.R., Leal-Junior, A.G., André, P.S.B., Da Costa Antunes, P.F., Pontes, M.J., Frizera-Neto, A., Ribeiro, M.R.N.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18, 193–200 (2018). https:// doi. org/ 10. 1109/ JSEN. 2017. 27685 10
dc.relationDiaz, C.A.R., Leal-Junior, A., Marques, C., Frizera, A., Pontes, M.J., Antunes, P.F.C., Andre, P.S.B., Ribeiro, M.R.N.: Optical fiber sensing for sub-millimeter liquid-level monitoring: a review. IEEE Sens. J. 19, 7179–7191 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 29150 31
dc.relationEscudero, P., Yeste, J., Pascual-Izarra, C., Villa, R., Alvarez, M.: Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications. Sci. Rep. 9, 1–10 (2019). https:// doi. org/ 10. 1038/ s41598- 019- 40267-5
dc.relationGuo, Z., Lv, W., Wang, W., Chen, Q., Zhang, X., Chen, H., Ma, Z.: Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method. Sensors (Switzerland). (2019). https:// doi. org/ 10. 3390/ s1907 1628
dc.relationHsu, J., Lee, C., Chang, H., Shih, W.C., Li, C.: Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing. IEEE Photonics Technol. Lett. 25, 1354–1357 (2013). https:// doi. org/ 10. 1109/ LPT. 2013. 22657 38
dc.relationKim, J.T., Choi, H., Shin, E.J., Park, S., Kim, I.G.: Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 8, 1–6 (2018). https:// doi. org/ 10. 1038/ s41598- 018- 34613-2
dc.relationLacam, A., Chateau, C.: High-pressure measurements at moderate temperatures in a diamond anvil cell with a new optical sensor: SrB4O7:Sm2+. J. Appl. Phys. 66, 366–372 (1989). https:// doi. org/ 10. 1063/1. 343884
dc.relationLeger, J.M., Chateau, C., Lacam, A.: SrB4O7:Sm2 + pressure optical sensor: Investigations in the megabar range. J. Appl. Phys. 68, 2351–2354 (1990). https:// doi. org/ 10. 1063/1. 346543
dc.relationLeitão, C., Antunes, P., Pinto, J., Mesquita Bastos, J., André, P.: Optical fiber sensors for central arterial pressure monitoring. Opt. Quantum Electron. 48, 1–9 (2016). https:// doi. org/ 10. 1007/ s11082- 016- 0494-1
dc.relationLi, M., Wang, M., Li, H.: Optical MEMS pressure sensor based on Fabry–Perot interferometry. Opt. Express. 14, 1497 (2006). https:// doi. org/ 10. 1364/ oe. 14. 001497
dc.relationLi, P., Yan, H., Zhang, H.: Highly sensitive liquid level sensor based on an optical fiber Michelson interferometer with core-offset structure. Optik (Stuttg). 171, 781–785 (2018). https:// doi. org/ 10. 1016/j. ijleo. 2018. 06. 126
dc.relationLin, C., Fang, X.: Miniature MEMS Fabry–Perot interferometry pressure sensor and the fabrication system. In: 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 105–108 (2016). https:// doi. org/ 10. 1109/
dc.relationICASID. 2016. 78739 27
dc.relationLiu, Q., He, X., Fu, H., Yang, D., Xiao, F., Wang, X.: Temperature-insensitive optical fiber reflective micro-liquid level sensor base on the drop shape quasi-Mach Zehnder interferometer. Optik (Stuttg). 216, 164893 (2020). https:// doi. org/ 10. 1016/j. ijleo. 2020. 164893
dc.relationLü, T., Yang, S.: Extrinsic Fabry–Perot cavity optical fiber liquid-level sensor. Appl. Opt. 46, 3682–3687 (2007). https:// doi. org/ 10. 1364/ AO. 46. 003682
dc.relationMa, J., Ju, J., Jin, L., Jin, W.: A compact fiber-tip micro-cavity sensor for high-pressure measurement. IEEE Photonics Technol. Lett. 23, 1561–1563 (2011). https:// doi. org/ 10. 1109/ LPT. 2011. 21640 60
dc.relationMa, Z.M., Huang, Y.W., Meng, H., Huang, X.G.: Simultaneous measurement of temperature and pressure by utilizing an integrated Mach–Zehnder. J. Light. Technol. 35, 4924–4929 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27652 78
dc.relationMarques, C.A.F., Webb, D.J., Andre, P.: Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 36, 144–154 (2017). https:// doi. org/ 10. 1016/j. yofte. 2017. 03. 010
dc.relationMartins, J., Diaz, C.A.R., Domingues, M.F., Ferreira, R.A.S., Antunes, P., Andre, P.S.: Low-cost and high-performance optical fiber-based sensor for liquid level monitoring. IEEE Sens. J. 19, 4882– 4888 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 28955 49
dc.relationMusayev, E., Karlik, S.E.: A novel liquid level detection method and its implementation. Sensors Actuators A Phys. 109, 21–24 (2003). https:// doi. org/ 10. 1016/ S0924- 4247(03) 00347-9
dc.relationOliveira, R., Bilro, L., Nogueira, R., Rocha, A.M.: Adhesive based Fabry-Pérot hydrostatic pressure sensor with improved and controlled sensitivity. J. Light. Technol. 37, 1909–1915 (2019). https:// doi. org/ 10. 1109/ JLT. 2019. 28949 49
dc.relationQi, X., Wang, S., Jiang, J., Liu, K., Wang, X., Yang, Y., Liu, T.: Fiber optic Fabry–Perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection. J. Light. Technol. 37, 2719–2725 (2019). https:// doi. org/ 10. 1109/ JLT. 2018. 28767 17
dc.relationReddy, J.N.: Theory and Analysis of Elastic Plates and Shells, Second Edition. Taylor & Francis (2006). https:// doi. org/ 10. 1201/ 97808 49384 165
dc.relationSanaâ, F., Palierne, J.F., Gharbia, M.: Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film. Opt. Mater. (Amst). 57, 193–201 (2016). https:// doi. org/ 10. 1016/j. optmat. 2016. 04. 036
dc.relationSartiano, D., Sales, S.: Low cost plastic optical fiber pressure sensor embedded in mattress for vital signal monitoring. Sensors (Switzerland). (2017). https:// doi. org/ 10. 3390/ s1712 2900
dc.relationShin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., Xue, Y., Kandela, I., Pezhouh, M., MacEwan, M.R., Huang, Y., Ray, W.Z., Zhou, W., Rogers, J.A.: Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, 1–13 (2019). https:// doi. org/ 10. 1126/ sciadv. aaw18 99
dc.relationSpillman, W.B.: Multimode fiber-optic pressure sensor based on the photoelastic effect. Opt. Lett. 7, 388 (1982). https:// doi. org/ 10. 1364/ ol.7. 000388
dc.relationSrivastava, R., Chattopadhyay, J.: Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications BT - Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. (2017). https:// doi. org/ 10. 1007/ 978- 981- 10- 5346-7
dc.relationSun, M., Jin, Y., Dong, X.: All-Fiber Mach–Zehnder Interferometer for Liquid Level Measurement. IEEE Sens. J. 15, 3984–3988 (2015). https:// doi. org/ 10. 1109/ JSEN. 2015. 24068 72
dc.relationTian, J., Zhang, Q., Fink, T., Li, H., Peng, W., Han, M.: Tuning operating point of extrinsic Fabry–Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure. Opt. Lett. 37, 4672– 4674 (2012). https:// doi. org/ 10. 1364/ OL. 37. 004672
dc.relationUrbańczyk, W., Pietraszkiewicz, K.: Measurements of stress anisotropy in fiber preform: modification of the dynamic spatial filtering technique. Appl. Opt. 27, 4117 (1988). https:// doi. org/ 10. 1364/ ao. 27. 004117
dc.relationVan De Stadt, H., Muller, J.M.: Multimirror Fabry–Perot interferometers. J. Opt. Soc. Am. A. 2, 1363–1370 (1985). https:// doi. org/ 10. 1364/ JOSAA.2. 001363
dc.relationVolynskii, L., Bakeev, N.F.: Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers. CRC Press (2018). https:// doi. org/ 10. 1201/ 97813 15367 873
dc.relationVorathin, E., Hafizi, Z.M., Aizzuddin, A.M., Zaini, M.K.A., Lim, K.S.: A novel temperature-insensitive hydrostatic liquid-level sensor using chirped FBG. IEEE Sens. J. 19, 157–162 (2019). https:// doi. org/ 10. 1109/ JSEN. 2018. 28755 32
dc.relationVorathin, E., Hafizi, Z.M., Ismail, N., Loman, M.: Review of high sensitivity fibre-optic pressure sensors for low pressure sensing. Opt. Laser Technol. (2020). https:// doi. org/ 10. 1016/j. optla stec. 2019. 105841
dc.relationWang, W., Li, F.: Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer. Opt. Lasers Eng. 52, 201–205 (2014). https:// doi. org/ 10. 1016/j. optla seng. 2013. 06. 009
dc.relationWang, X., Li, B., Russo, O.L., Roman, H.T., Chin, K.K., Farmer, K.R.: Diaphragm design guidelines and an optical pressure sensor based on MEMS technique. Microelectronics J. 37, 50–56 (2006a). https:// doi. org/ 10. 1016/j. mejo. 2005. 06. 015
dc.relationWang, X., Xu, J., Zhu, Y., Cooper, K.L., Wang, A.: All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett. 31, 885–887 (2006b). https:// doi. org/ 10. 1364/ OL. 31. 000885
dc.relationWolthuis, R.A., Mitchell, G.L., Saaski, E., Hartl, J.C., Afromowitz, M.A.: Development of medical pressure and temperature sensors employing optical spectrum modulation. IEEE Trans. Biomed. Eng. 38, 974–981 (1991). https:// doi. org/ 10. 1109/ 10. 88443
dc.relationYu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., Wei, H.: Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Appl. Phys. B. 120, 461–467 (2015). https:// doi. org/ 10. 1007/ s00340- 015- 6155-4
dc.relationZhang, L., Jiang, Y., Gao, H., Jia, J., Cui, Y., Ma, W., Wang, S., Hu, J.: A diaphragm-free fiber Fabry–Perot gas pressure sensor. Rev. Sci. Instrum. 90, 25005 (2019). https:// doi. org/ 10. 1063/1. 50556 60
dc.relationZhang, Q., Lei, J., Chen, Y., Wu, Y., Xiao, H.: Glass 3D printing of microfluidic pressure sensor interrogated by fiber-optic refractometry. IEEE Photonics Technol. Lett. 32, 414–417 (2020). https:// doi. org/ 10. 1109/ LPT. 2020. 29773 24
dc.relationZhang, Z., Liao, C., Tang, J., Bai, Z., Guo, K., Hou, M., He, J., Wang, Y., Wang, Y., Liu, S., Zhang, F.: High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer. J. Light. Technol. 35, 4067–4071 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27102 10
dc.relationZhao, Y., Yuan, Y., Gan, W., Yang, M.: Optical fiber Fabry–Perot humidity sensor based on polyimide membrane: sensitivity and adsorption kinetics. Sensors Actuators A Phys. 281, 48–54 (2018). https:// doi. org/ 10. 1016/j. sna. 2018. 08. 044
dc.relationZhu, J., Wang, M., Chen, L., Ni, X., Ni, H.: An optical fiber Fabry–Perot pressure sensor using corrugated diaphragm and angle polished fiber. Opt. Fiber Technol. 34, 42–46 (2017). https:// doi. org/ 10. 1016/j. yofte. 2016. 12. 004
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Springer, 2021
dc.sourcehttps://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdf
dc.titleLow‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución