dc.creatorHidalgo Salazar, Miguel Angel
dc.creatorMina Hernández, José Herminsul
dc.creatorMunoz Aguilar, Mario F.
dc.date.accessioned2020-02-13T17:11:32Z
dc.date.available2020-02-13T17:11:32Z
dc.date.created2020-02-13T17:11:32Z
dc.date.issued2015
dc.identifierhttp://red.uao.edu.co//handle/10614/11884
dc.description.abstractEste estudio muestra el efecto de la incorporación de fibras naturales de fique en una matriz formada por polietileno de baja densidad y aluminio (LDPE-Al) obtenido en el proceso de reciclaje de envases Tetra Pak de larga duración. El contenido de refuerzo fue de 10, 20 y 30% de fibras, fabricadas mediante moldeo por compresión en caliente de tableros compuestos (LDPE-Al / fique). A partir del análisis termogravimétrico (TGA) se determinó que las proporciones del LDPE-Al fueron 75:25 p / p. Asimismo, se encontró que las partículas de aluminio aumentaron la rigidez del LDPE-Al, reduciendo la resistencia al impacto en comparación con LDPE reciclado de Tetra Pak sin aluminio; además de esto, la cristalinidad en el LDPE-Al aumentó con la presencia de aluminio, lo cual fue observado por calorimetría diferencial de barrido (DSC). La resistencia máxima y el módulo de Young a las propiedades de tracción y flexión aumentaron con la incorporación de las fibras, siendo este aumento una función directa de la cantidad de refuerzo contenido en el material. Finalmente, se identificó una reducción en la densidad del compuesto por la generación de huecos en la interfaz entre el LDPE-Al y las fibras de fique, y también hubo una mayor absorción de agua debido a la débil interfase fibra-matriz y las fibras hidrofílicas contenidas en el material.
dc.description.abstractThis study shows the effect of the incorporation of natural fique fibers in a matrix formed by low-density polyethylene and aluminum (LDPE-Al) obtained in the recycling process of long-life Tetra Pak packaging. The reinforcement content was 10, 20, and 30% fibers, manufactured by hot-press compression molding of composite boards (LDPE-Al/fique). From the thermogravimetric analysis (TGA) it was determined that the proportions of the LDPE-Al were 75 : 25 w/w. Likewise, it was found that the aluminum particles increased the rigidity of the LDPE-Al, reducing the impact strength compared to LDPE recycled from Tetra Pak without aluminum; besides this, the crystallinity in the LDPE-Al increased with the presence of aluminum, which was observed by differential scanning calorimetry (DSC). The maximum strength and Young’s modulus to tensile and flexural properties increased with the incorporation of the fibers, this increase being a direct function of the amount of reinforcement contained in the material. Finally, a reduction in the density of the compound by the generation of voids at the interface between the LDPE-Al and fique fibers was identified, and there was also a greater water absorption due to weak interphase fiber-matrix and the hydrophilic fibers contained in the material.
dc.languageeng
dc.publisherHindawi
dc.relationID 386325
dc.relation2015
dc.relationHidalgo Salazar, M., Mina Hernández, J. H., Muñoz, M. F. (2015). Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers. International Journal of Polymer Science. 2015, (Article ID 386325),1- 8 .http://red.uao.edu.co//handle/10614/11884
dc.relationInternational Journal of Polymer Science
dc.relationA. K. Bledzki and J. Gassan, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, 1999.
dc.relationP. Wambua, J. Ivens, and I. Verpoest, “Natural fibres: can they replace glass in fibre-reinforced plastics?” Composites Science and Technology, vol. 63, no. 9, pp. 1259–1264, 2003.
dc.relationS. J. Eichhorn and R. J. Young, “Composite micromechanics of hemp fibres and epoxy resin microdroplets,” Composites Science and Technology, vol. 64, no. 5, pp. 767–772, 2004.
dc.relationS. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 3, pp. 371–376, 2004.
dc.relationM. Brahmakumar, C. Pavithran, and R. M. Pillai, “Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites,” Composites Science and Technology, vol. 65, no. 3-4, pp. 563–569, 2005.
dc.relationP. J. Herrera-Franco and A. Valadez-González, “A study of the mechanical properties of short natural-fiber reinforced composites,” Composites Part B: Engineering, vol. 36, no. 8, pp. 597–608, 2005.
dc.relationP. Gañán and I. Mondragon, “Fique fiber-reinforced polyester composites: effects of fiber surface treatments on mechanical behavior,” Journal of Materials Science, vol. 39, no. 9, pp. 3121–3128, 2004.
dc.relationM. A. Hidalgo, M. F. Muñoz, and K. J. Quintana, “Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers,” Revista Latinoamericana de Metalurgia y Materiales, vol. 31, no. 2, pp. 187–194, 2011.
dc.relationM. Hidalgo, M. Muñoz, and K. Quintana, “Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement,” Revista Latinoamericana de Metalurgia y Materiales, vol. 32, no. 1, pp. 89–95, 2012.
dc.relationJ. H. Mina, “Physico-mechanical characterization of thermoplastic cassava starch (TPS) and interfacial analysis with fique fibers,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 10, pp. 99–109, 2012.
dc.relationM. F. Muñoz-Velez, M. A. Hidalgo-Salazar, and J. H. Mina-Hernandez, “Fique fiber an alternative for reinforced plastics. Influence of surface modification,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 12, no. 2, pp. 60–70, 2014.
dc.relationF. L. Neves, “Reciclagem de embalagens cartonadas Tetra Pak,” O Papel, vol. 53, no. 2, pp. 38–45, 1999.
dc.relationA. L. Mourad, E. E. C. Garcia, G. B. Vilela, and F. von Zuben, “Influence of recycling rate increase of aseptic carton for long-life milk on GWP reduction,” Resources, Conservation and Recycling, vol. 52, no. 4, pp. 678–689, 2008.
dc.relationM. A. Hidalgo, J. H. Mina, and P. J. Herrera, “The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials,” Composites Part B: Engineering, vol. 55, pp. 345–351, 2013.
dc.relationC. Guerrero, T. Lozano, V. Gonzales, and E. Arroyo, “Morfologia y propiedades de politereftalato de etilen-glicol y polietileno de alta densidad,” Ciencia UANL, vol. 6, no. 2, pp. 203–211, 2003.
dc.relationY. Habibi, W. K. El-Zawawy, M. M. Ibrahim, and A. Dufresne, “Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues,” Composites Science and Technology, vol. 68, no. 7-8, pp. 1877–1885, 2008.
dc.relationC. Desiderá, Blendas de poliamida reciclada e polietileno proveniente da recuperação de embalagens multicamadas [PhD dissertation], Universidade Estadual de Campinas, 2007.
dc.relationK. Ghosh and S. N. Maiti, “Mechanical properties of silver-powder-filled polypropylene composites,” Journal of Applied Polymer Science, vol. 60, no. 3, pp. 323–331, 1996.
dc.relationA. Gungor, “The physical and mechanical properties of polymer composites filled with Fe powder,” Journal of Applied Polymer Science, vol. 99, no. 5, pp. 2438–2442, 2006.
dc.relationB. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Composites Science and Technology, vol. 68, no. 7-8, pp. 1601–1607, 2008.
dc.relationM. E. Vallejos, Aprovechamiento integral del cannabis sativa como material de refuerzo /carga del polipropileno [Ph.D. thesis], Universitat de Girona, Girona, Spain, 2006.
dc.relationW. Wang, M. Sain, and P. A. Cooper, “Study of moisture absorption in natural fiber plastic composites,” Composites Science and Technology, vol. 66, no. 3-4, pp. 379–386, 2006.
dc.relationS. M. L. Rosa, E. F. Santos, C. A. Ferreira, and S. M. B. Nachtigalt, “Studies on the properties of rice-husk-filled-PP composites—effect of maleated PP,” Materials Research, vol. 12, no. 3, pp. 333–338, 2009.
dc.relationS. N. Monteiro, V. Calado, R. J. S. Rodriguez, and F. M. Margem, “Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview,” Materials Science and Engineering A, vol. 557, no. 15, pp. 17–28, 2012.
dc.relationB. Tajeddin, R. A. Rahman, L. C. Abdulah, N. A. Ibrahim, and Y. A. Yusof, “Thermal properties of low density polyethylene—filled kenaf cellulose composites,” European Journal of Scientific Research, vol. 32, no. 2, pp. 223–230, 2009.
dc.relationC. M. A. Lopes and M. I. Felisberti, “Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging,” Journal of Applied Polymer Science, vol. 101, no. 5, pp. 3183–3191, 2006.
dc.relationA. Stamboulis, C. Baillie, and E. Schulz, “Interfacial characterisation o flax fibre—thermoplastic polymer composites by the pull-out test,” in Proceedings of the 2nd International Wood and Natural Fibre Composites Symposium, Kassel, Germany, June 1999.
dc.relationP. Gañán and I. Mondragon, “Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites,” Journal of Thermal Analysis and Calorimetry, vol. 73, no. 3, pp. 783–795, 2003.
dc.relationD. Aht-Ong and K. Charoenkongthum, “Thermal properties and moisture absorption of LDPE/banana starch biocomposite films,” Journal of Metals, Materials and Minerals, vol. 12, no. 1, pp. 1–10, 2002.
dc.relationA. Morales, D. Victoria, M. Ponce, and T. Lozano, “Materiales reforzados de poliolefinas recicladas y nanofibras de celulosa de henequén,” Revista Iberoamericana de Polímeros, vol. 12, no. 5, pp. 255–267, 2011.
dc.relationA. Amash and P. Zugenmaier, “Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites,” Polymer, vol. 41, no. 4, pp. 1589–1596, 2000.
dc.relationT. N. Mtshali, I. Krupa, and A. S. Luyt, “The effect of cross-linking on the thermal properties of LDPE/wax blends,” Thermochimica Acta, vol. 380, no. 1, pp. 47–54, 2001.
dc.relationQ. Fu, Y. Men, and G. Strobl, “Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology,” Polymer, vol. 44, no. 6, pp. 1927–1933, 2003.
dc.relationInternational Journal of Polymer Science. Volumen 2015
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleInfluence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites ldpe-al reinforced with fique fibers
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución