dc.creatorAparicio Rojas, Gladis Miriam
dc.creatorBueno, Paulo Roberto
dc.creatorVargas, Rubén Antonio
dc.date.accessioned2019-11-20T21:54:13Z
dc.date.accessioned2022-09-22T18:44:18Z
dc.date.available2019-11-20T21:54:13Z
dc.date.available2022-09-22T18:44:18Z
dc.date.created2019-11-20T21:54:13Z
dc.date.issued2019-10-15
dc.identifier00223093
dc.identifierhttp://hdl.handle.net/10614/11558
dc.identifierhttps://doi.org/10.1016/j.jnoncrysol.2019.119520
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457551
dc.description.abstractNanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The phase behavior of the membranes was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). High resolution SEM micrographs show that the TiO2 nanoparticles are homogeneously dispersed, whilst the PVA crosslinks with the inorganic phase and fill in the gap between the nanoparticles. The ionic conductivity measurements were studied by impedance spectroscopy in the radio frequency range between 5 kHz to 5 MHz. Proton conductivity increases by several orders of magnitude with increasing cross-linking reaction time, reaching a maximum of 0.016 Scm−1 at 130 °C for the PVA/TiO2 composition of 1:12%, which was cross-linked for 42 h and then immersed in a 32 wt% KOH solution for 24 h. The ionic activation energy of the prepared membranes ranged from 0.038 KeV to 0.121 KeV. This result was carried out to obtain an estimation of the desorption time of water in the range from room temperature to the decomposition temperature around 500 °C.
dc.languageeng
dc.publisherElsevier
dc.relation522
dc.relationAparicio, G. M., Vargas, R. A., & Bueno, P. R. (2019). Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. Journal of Non-Crystalline Solids, 522, 119520
dc.relationJournal of Non-Crystalline Solids
dc.relation[1] E. Ortiz, R.A. Vargas, B.E. Mellender, On the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transition, J. Phys. Chem. Solids 59 (3) (March 1998) 305–310.
dc.relation[2] G.M. Aparicio, G. González-Montero, R.A. Vargas, Análisis de las Transiciones de Fase en Sales Iónicas LiMSO4 (M= K, NH4, K1-X(NH4)X) a Altas Temperaturas, Revista Colombiana de Física 33 (N2) (2001) 122–126.
dc.relation[3] E. Ortiz, R.A. Vargas, B.E. Mellender, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110 (10) (March 1999) 4847–4853.
dc.relation[4] P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and tech-nology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sour. 102 (1–2) (2001) 242–252.
dc.relation[5] J.A. Trujillo, H. Correa, J.F. Jurado, R.A. Vargas, The thermoelectric power of chromel at low temperatures, Phys. Status Solidi B 220 (July 2000) 467–469.
dc.relation[6] I. Delgado, J. Castillo, M. Chacón, R.A. Vargas, Ionic conductivity in the polymer electrolytes PEO/CF3COONa, Phys. Status Solidi B 220 (2000) 625–629.
dc.relation[7] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado, The phase transitions in LiNH4SO4 between and above room temperature, Physica Status Solidi. Editorial Office. 120 (July 2000) 651–654.
dc.relation[8] E. Matallana, A. Garcia, R.A. Vargas, New phase boundaries in Kx(NH4)1-x I at low-temperatures, Phys. Status Solidi B 220 (2000) 655–657.
dc.relation[9] Diaz-Ortiz Jolman Stiven, Delgado-Rosero Miguel Iban, Jurado-Meneses Nori Magali, Aparicio-Rojas Gladis Miriam, Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells, DYNA 85 (204) (2018) 143–149 ISSN 0012-7353.
dc.relation[10] J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Alkaline poly (ethylene oxide) solid polymer electrolyte, Electrochim. Acta 40 (1995) 2449.
dc.relation[11] S. Guinot, E. Slmon, J.F. Penneau, F. Fauvarque, A new class of PEO – based SPEs: structure, conductivity and application to alkaline secondary batteries, Electrochim. Acta 43 (1998) 1163.
dc.relation[12] N. Vassal, E. Salmon, F. Fauvarque, Electrochemical properties o fan alkaline solid polymer electrolyte base don P (ECH-co-EO), Electrochim. Acta 45 (2000) 1527.
dc.relation[13] N. Vassal, E. Salmon, J.F. Fauvarque, Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte, J. Electrochem. Soc. 146 (1999) 20.
dc.relation[14] C.C. Yang, Polymer Ni-MH battery base on PEO-PVA-KOH polymer lectrolyte, J. Power Sources 109 (2002) 22.
dc.relation[15] C.C. Yang, S.J. Lin, Alkaline composite PEO-PVA-glass-fibre-mat polymer electro-lyte for Zn-air battery, J. Power Sources 112 (2002) 497.
dc.relation[16] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor base on ac-tivated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46 (2001) 2777.
dc.relation[17] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Mater. Lett. 57 (2002) 873.
dc.relation[18] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni- Fig. 11. Effect of the concentration of TiO2 on the conductivity values of the polymer composition with PVA base. G.M. Aparicio, et al. Journal of Non-Crystalline Solids 522 (2019) 119520 Fig. 63437382424Fig. 1124 MH and Zn-air batteries, J. Appl. Electrochem. 33 (2003) 777.
dc.relation[19] E. Agel, J. Bouet, J.F. Fauvarque, H. Yassir, utilisation d electrolyute solide polimere Dans les piles a combustibles alcalines, Ann. Chim. Sci. Mater. 26 (2001) 59.
dc.relation[20] C.W. Lin, R. Thangamuthu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly (vinyl alcohol) for DMFC appli-cations, J. Membr. Sci. 253 (2005) 23.
dc.relation[21] C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T. Lee, C.L. Wang, Electrochemical properties o fair electrodes base on MnO2 catalysts supported on binary carbons, Int. J. Hydrog. Energy 31 (2006) 2076.
dc.relation[22] N. Chand, N. Rai, S.L. Agrawal, S.K. Patel, Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol compo-site gel electrolyte, Bull. Mater. Sci. 34 (7) (2011) 1297–1304.
dc.relation[23] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, Mater. Chem. Phys. 92 (2005) 251.
dc.relation[24] C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci. 288 (1-2) (2007) 51–60.
dc.relation[25] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.
dc.relation[26] Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon, PVA nano composite membrane for DMFC application, Solid State Ionics 201 (1) (2011) 21–26.
dc.relation[27] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer elec-trolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (4) (2011) 981–1007.
dc.relation[28] M.A. Vargas, R.A. Vargas, B.-E. Mellander, Phase behavior of a PVA-based polymer proton conductor, Phys. Status Solidi A 220 (2000) 615–624.
dc.relation[29] M.A. Vargas, R.A. Vargas, B.-E. Mellander, More studies on the PVA+H3PO2+H2O, Electrochim. Acta 45 (2000) 1399–1403.
dc.relation[30] F. Bedoya, R.A. Vargas, Thermomechanical characterization of polimeric ionic conductor membranes based on PVA-H3PO-ZrO2, J. Nanostruct. Polymers Nanocomp. 9 (1) (2013) 5–11.
dc.relation[31] Chiam-Wen Liew, S. Ramesh, A.K. Arof, Investigation of ionic liquid-based poly (vinyl alcohol) proton conductor for electrochemical double-layer capacitor, High Performance Polym. (September 1, 2014) 632–636 26 issue: 6, page(s.
dc.relation[32] S. Abarna, G. Hirankumar, Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity, Ionics 23 (17 February 2017) 1733–1743.
dc.relation[33] Omed Gh. Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte film, 24 (2018), pp. 777–785.
dc.relation[34] Panel Maykel dos SantosKlemRogério MirandaMoraisRafael Jesus GonçalvesRubiraNeriAlves, Paper-Based Supercapacitor with Screen-Printed Poly (3, 4-Ethylene Dioxythiophene)-Poly (Styrene Sulfonate)/Multiwall Carbon Nanotube Films Actuating both as Electrodes and Current Collectors, vol. 669, (2019), pp. 96–102.
dc.relation[35] C.S. Sunandana, P. Senthil Kumar, Theoretical approaches to superionic con-ductivity, Bull. Mater. Sci. 27 (1) (February 2004) 1–17.
dc.relation[36] C. Moynihan, D. Gavin, R. Syed, Pre-exponential term in the Arrhenius equation for electrical conductivity of glass, Journal de Physique Colloques 43 (C9) (1982) C9-395–C9-398, https://doi.org/10.1051/jphyscol:1982975ff. ffjpa-00222504.
dc.relation[37] M. Nori, I. Delgado Jurado, R.A. Vargas, Conductividad iónica en nuevos compo-sitos (PEO)10(CF3COONa)-X% Al2O3, Univ. Sci. 18 (2) (2013) 173–180, https://doi.org/10.11144/Javeriana.SC18-2.cinc.
dc.relation[38] E.A. Villegas, J.H. Castillo, P.R. Bueno, Propiedades eléctricas en membranas de complejos electrolitos poliméricos PVA-OH/LI2SO4/PEG400, Polímeros 24 (2) (2014)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0022309319303916
dc.titleProtonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución