dc.contributorVásquez Sarria, Nancy
dc.creatorParedes Baquero, Valentina
dc.creatorTrujillo Chaparro, Laura Valentina
dc.date.accessioned2021-03-15T16:09:45Z
dc.date.accessioned2022-09-22T18:43:47Z
dc.date.available2021-03-15T16:09:45Z
dc.date.available2022-09-22T18:43:47Z
dc.date.created2021-03-15T16:09:45Z
dc.date.issued2021-03-05
dc.identifierhttps://hdl.handle.net/10614/12893
dc.identifierUniversidad Autónoma de Occidente (UAO)
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457383
dc.description.abstractLa recuperación de nutrientes a partir del tratamiento del agua residual, se ha convertido en un foco de investigación, ganando mayor interés, debido a que permite en primer lugar minimizar impactos ambientales negativos asociados a la obtención y eliminación de nutrientes como el nitrógeno (N) y el fósforo (P). Asimismo, es una alternativa para obtener un producto con un potencial de aprovechamiento en diferentes sectores industriales y agroindustriales en el mundo. Es así como en este trabajo de grado, se formularon alternativas de utilización de un lodo rico en estruvita obtenido a partir del tratamiento de agua residual municipal mediante procesos de precipitación química y cristalización. El proyecto se conformó por tres etapas, en la primera etapa se llevó a cabo el análisis de las características fisicoquímicas y estructurales de los lodos obtenidos a partir de los procesos mencionados, mediante el análisis de DRX, SEM y EDS. La segunda etapa consistió en un análisis comparativo de los lodos ricos en estruvita con la estruvita pura y otros nutrientes utilizados en procesos industriales y agroindustriales del valle geográfico del río Cauca. Finalmente, en la tercera etapa se establecieron los potenciales usos del lodo en estudio. En la primera etapa, mediante el análisis de DRX, SEM y EDS, de cada una de las muestras, se ratificó que es posible fomentar la formación de estruvita mediante un proceso de precipitación química simple. Así mismo en la segunda etapa, en donde se evaluó la calidad de los lodos obtenidos a partir del tratamiento de agua residual mediante procesos de cristalización, mostró que se puede obtener estruvita de calidad media a alta que le confieren un potencial de utilización principalmente en la agroindustria donde su principal objetivo sería el aprovechamiento del N y el P. La tercera etapa mostró que para el valle geográfico del río Cauca, especialmente en el departamento del Valle del Cauca, las principales alternativas de utilización para un lodo rico en estruvita, obtenido a partir del tratamiento de agua residual municipal están ubicadas en el sector agrícola, principalmente como fertilizante organomineral para cultivos de caña de azúcar, Café, Plátano, Maíz tecnificado, Banano, Caña panelera, Cítricos, Arroz mecanizado, Maíz tradicional y Chontaduro, entre otros, así como para plantaciones forestales, cultivos de plantas ornamentales y como materia prima para industrias relacionadas con la formulación, fabricación y distribución de fertilizantes en el departamento.
dc.description.abstractThe recovery of nutrients from wastewater treatment has become a focus of research, gaining more interest, because it allows, in the first place, to minimize negative environmental impacts associated with the obtaining and elimination of nutrients such as nitrogen (N) and phosphorus (P). Likewise, it is an alternative to obtain a product with a potential to use in different industrial and agro-industrial sectors in the world. Thus, in this work, alternatives were formulated for the use of a struvite-rich sludge obtained from municipal wastewater treatment through chemical precipitation and crystallization processes. The project was made up of three stages. In the first stage, the analysis of the physicochemical and structural characteristics of the sludge obtained from the aforementioned processes was carried out, through the analysis of XRD, SEM and EDS. The second stage consisted of a comparative analysis of the struvite-rich sludge with pure struvite and other nutrients used in industrial and agro-industrial processes in the geographic valley of the Cauca River. Finally, in the third stage, the potential uses of the mud under study were established. In the first stage, through the analysis of XRD, SEM and EDS, of each of the samples, it was confirmed that it is possible to promote the formation of struvite through a simple chemical precipitation process. Likewise, in the second stage, where the quality of the sludge obtained from the wastewater treatment through crystallization processes was evaluated, showed that medium to high quality struvite can be obtained, which gives it a potential for use mainly in the agro-industry where its main The objective would be to take advantage of N and P. The third stage showed that for the geographic valley of the Cauca River, especially in the department of Valle del Cauca, the main use alternatives for a mud rich in struvite, obtained from municipal wastewater treatment, are located in the agricultural sector, Mainly as an organomineral fertilizer for sugarcane crops, Coffee, Banana, Technified Corn, Banana, Panelera Cane, Citrus, Mechanized Rice, Traditional Corn and Chontaduro, among others; as well as for forest plantations, ornamental plants crops and as raw material for industries related to the formulation, manufacture and distribution of fertilizers in the department.
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Ambiental
dc.publisherDepartamento de Energética y Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherSantiago de Cali
dc.relationAgencia de Protección Ambiental de Estados Unidos. (2016) Contaminación por nutrientes. Recuperado de: https://espanol.epa.gov/espanol/contaminacion-por-nutrientes.
dc.relationAgustina, T., Rizky, I., Utama, M., Amal, M. (2018). Characterization and Utilization of Zeolite for NPK Slow Release Fertilizer (Research Note). International Journal of Engineering, 31(4), 622-628. doi: 10.5829/ije.2018.31.04a.14
dc.relationAkhtar, K., Khan, S. A., Khan, S. B., y Asiri, A. M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. Handbook of Materials Characterization, 113–145. doi:10.1007/978-3-319-92955-2_4
dc.relationAlfonso, W. H., y Pardo, C. I. (julio 2014). Urban material flow analysis: An approach for Bogotá, Colombia. Ecological Indicators, 42, 32-42. doi: https://doi.org/10.1016/j.ecolind.2013.10.035.
dc.relationAmigos de la Tierra. (2015). Manual Básico para hacer compost. Recuperado de: https://www.tierra.org/wp-content/uploads/2015/03/compost_esp_v04.pdf
dc.relationAndreu J., Betrán J., Delgado I. Espada J.L., Gil M., Gutiérrez M., Iguácel F., Isla R., Muñoz F., Orús F., Pérez M., Quílez D., Sin E., Yagüe M.R. (2006). Fertilización nitrogenada: Guía de actualización. Recuperado de: https://core.ac.uk/download/pdf/219384029.pdf
dc.relationAparicio, M. E., y Carbajal, G. (2010). Utilidad de la difracción de los rayos X en las nanociencias. Mundo Nano, 3, 2-7. doi: www.mundonano.unam.mx
dc.relationAriyanto, E., Sen, T.K., Ang, H.M. (marzo 2014). The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation. Advanced Powder Technology, 25(2), 682-694. doi: https://doi.org/10.1016/j.apt.2013.10.014
dc.relationBhagowati, B., y Ahamad, K. U. (enero 2018). A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrology & hydrobiology, 19(1), 155-166. doi: https://doi.org/10.1016/j.ecohyd.2018.03.002
dc.relationBydalek, F., Kula, A., and Makinia, J. (junio, 2018). Morphology and elemental composition of product obtained from struvite fluidized bed reactor. Sciendo, 28 (2), 139-149. doi: 10.2478/ceer-2018-0025
dc.relationChauhan, P., Chauhan, R. P., y Gupta, M. (2013). Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchemical Journal, 106, 73–78. doi:10.1016/j.microc.2012.05.007
dc.relationColviveros. (2020). Catálogo de Plantas Ornamentales, Cadena viverista. Recuperado de: https://www.colviveros.org/Catalogo-viveros-PLANTAS-ORNAMENTALES-2020-4.pdf
dc.relationCordell, D., Drangert, J. y White, S. (mayo 2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19 (2), 292–305. doi: https://doi.org/10.1016/j.gloenvcha.2008.10.009.
dc.relationCordell, D., Rosemarin, A., Schroder, J.J. y Smit, A.L. (agosto 2011). Towards global phosphorus & security: a systems framework for phosphorus recovery and reuse options. Chemosphere, 84 (6), 747-758. doi: https://doi.org/10.1016/j.chemosphere.2011.02. 032.
dc.relationCrystal Green® (2016) Safety Data Sheet. Recuperado de: http://crystalgreen.com/wp-content/uploads/2016/01/SDS_EU_Ostara_Crystal-Green_103116.pdf
dc.relationDai, H., Lu, X., Peng, Y., Zou, H. y Shi, J. (diciembre 2016). An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors. Chemosphere, 165, 211-220. doi: 10.1016/j.chemosphere.2016.09.001.
dc.relationDe Vries, S.C., Postma, R., Van Scholl, L., Blom-Zandstra, M., Verhagen, A., and Harms, I., 2017. Economic feasibility and climate benefits of using struvite from the Netherlands as a phosphate (P) fertilizer in West Africa. Wageningen Research, 48, 6. Recuperado de: from: https://www.researchgate.net/publication/318206649_Economic_feasibility_and_climate_benefits_of_using_struvite_from_the_Netherlands_as_a_phosphate_P_fertilizer_in_West_Africa [accessed Jan 31 2021].
dc.relationDe-Bashan, L.E., and Bashan, Y. (noviembre, 2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer. Water Research, 38 (19), 4222-4246. doi: https://doi.org/10.1016/j.watres.2004.07.014
dc.relationDegryse, F., Baird, R., Silva, R.C. y McLaughlin, M.J. (enero 2017). Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant Soil, 410 (1-2), 139–152. doi: https://doi.org/10.1007/s11104-016-2990-2.
dc.relationDemeestere, K., Smet, E., Van Langenhove, H., Galbacs, Z. (diciembre 2001). Optimalisation of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium. Environmental Technology, 22(12), 1419-1428. doi: 10.1080/09593332208618177
dc.relationDemirer, S.U., Othman, M. (julio 2009). Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation. Bioresource Technology, 100(13), 3236–3244. doi: https://doi.org/10.1016/j.biortech.2009.02.030
dc.relationDesmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W. y Meesschaert, B. (mayo 2015). Global phosphorus scarcity and full-scale P-recovery techniques: a review. Critical Reviews Environmental Science Technology, 45, 336–384. doi: https://doi.org/10.1080/10643389.2013.866531.
dc.relationDíaz, L.J., y Vecino, K.P. (2017). Del Digerido de un Biodigestor Rural a la Estruvita. (Trabajo de grado). Universidad Industrial de Santander, Bucaramanga, Colombia. Recuperado de: https://www.researchgate.net/publication/324970438_DEL_DIGERIDO_DE_UN_BIODIGESTOR_RURAL_A_LA_ESTRUVITA Semana. (22 de diciembre de 2017). Esta es la revolución del Valle por la diversificación de cultivos. Dinero. Recuperado de: https://www.dinero.com/edicion-impresa/regiones/articulo/valle-del-cauca-diversifica-sus-cultivos-agricolas/253669
dc.relationEuropean Sustainable Phosphorus Platform (2015) Proposed EU Fertiliser Regulation criterio for recovered struvite. Recuperado de: https://phosphorusplatform.eu/images/download/ESPP%20struvite%20FR%20criteria%20proposal%20sent%2024-4-15.pdf
dc.relationFattah, K., Mavinic, D., Koch, F., and Jacob, C. (julio, 2008). Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant. Journal of Environmental Science and Health, Part A, 43 (7), 756-764, doi: 10.1080/10934520801960052
dc.relationFerguson, S., Morris, G., Hao, H., Barrett, M., Glennon, B. (febrero 2014). Automated self seeding of batch crystallizations via plug flow seed generation. Chemical Engineering Research and Design 92(11), 2534-2541. doi: 10.1016/j.cherd.2014.01.028.
dc.relationFlores, L.A., García, R., Aranda, V., y Calero, J. (noviembre, 2018). Evaluación del fósforo de la estruvita como fertilizante en suelos con minerología contrastada. Revista Bio Ciencias, 5, e395. Doi:https://doi.org/10.15741/revbio.05.e395
dc.relationFrawley, P.J., Mitchell, N.A., O'Ciardha, C.T., Hutton, K.W. (junio 2012). The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chemical Engineering Science, 75, 183-197. doi: https://doi.org/10.1016/j.ces.2012.03.041
dc.relationFuturenviero. (2017). Primera planta de recuperación de fósforo en España. Recuperado de: http://www.futurenviro.com/pdf/reportajes-especiales/06-2017/Planta-estruvita.pdf
dc.relationGalindo, G., Herrero, M.A., Flores, M., y Fernández, J.L. (1999). Correlación de metales trazas en aguas subterráneas someras en la cuenca del río salado, provincia de Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Recuperado de: http://hdl.handle.net/10261/27240
dc.relationGarcía, C. (2020). Un modelo de negocio para la recuperación de estruvita a partir de purines de cerdo. Universitat Politécnica De Valéncia. Recuperado de: https://riunet.upv.es/handle/10251/147962
dc.relationGarcía, M.V., y Reyes, J. (noviembre, 2006). La hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica. Tip Revista Especializada en Ciencias Químico-Biológicas, 9 (2), 90-95. Recuperado de: https://www.redalyc.org/articulo.oa?id=432/43211937005
dc.relationGonzález, C., Camargo, M. A., Molina, F. J., y Fernández, B. (julio-septiembre, 2019). ”Effect of the stirring speed on the struvite formation using the centrate from a WWTP”, Revista Facultad de Ingeniería Universidad de Antioquia, 92, 42-50. [Online]. Available: https://www.doi.org/10.17533/udea.redin.20190518
dc.relationGrant, S., Saphores, J., Feldman, D., Hamilton, A.J., Fletcher, T.D., Cook, P.L.M.,Stewardson, M., Sanders, B.F., Levin, L.A., Ambrose, R.F., Deletic, A., Brown, R., Jiang, S.C., Rosso, D., Cooper, W.J., y Marusic, I., (agosto 2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337 (6095), 681-686. doi: 10.1126/science.1216852.
dc.relationGreenburg, A.E., Levin, G., Kauffman, W.G. (marzo 1955). The effect of phosphorus removal on the activated sludge process. Sewage and industrial wastes, 27 (3), 277-282. doi: https://www.jstor.org/stable/25032730
dc.relationHall, R.L, Staal, L.B., Macintosh K.A., McGrath, J.W., Bailey, J., Black, L., Nielsen, U.G., Reitzel, K., and Paul N. Williams P.N. (marzo, 2020). Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma, 362, 114096. Doi: https://doi.org/10.1016/j.geoderma.2019.114096
dc.relationHanhoun, M., Montastruc, L., Azzaro-Pantel, C., Biscans, B., Freche, M., Pibouleau, L., (febrero 2011). Temperature impact assessment on struvite solubility product: a thermodynamic modeling approach. The Chemical Engineering Journal, 167(1), 50-58. doi: 10.1016/j.cej.2010.12.001.
dc.relationHermassi, M., Valderrama, C., Dosta, J., Cortina, J.L., Batis, N.H. (mayo 2015). Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride. Chemical Engineering Journal, 267, 142-152. doi: https://doi.org/10.1016/j.cej.2014.12.079.
dc.relationHerrera, V., Gutierrez, N., Córdova, S., Marín, J.L., Carpanchay, M. I., Flores, A., y Romero, L. (julio, 2018). Calidad del agua subterránea para el riego en el Oasis de Pica, norte de Chile. IDESIA, 36 (2). doi: http://dx.doi.org/10.4067/S0718-34292018005000101.
dc.relationHolbrook, R. D., Galyean, A. A., Gorham, J. M., Herzing, A., y Pettibone, J. (2015). Overview of Nanomaterial Characterization and Metrology. Frontiers of Nanoscience, 47–87. doi:10.1016/b978-0-08-099948-7.00002-6
dc.relationHutnik, N., Wierzbowska, B., Piotrowski, K., Matynia, A. (enero 2013). Continuous reaction crystallization of struvite from solution containing phosphate(V) and nitrate(V) ions. The Online Journal of Science and Technology, 3 (2), 58-66.
dc.relationInstituto Colombiano Agropecuario. (2020). Empresas registradas fertilizantes-Julio 22 de 2020. Recuperado de: https://www.ica.gov.co/getdoc/90935cf8-c4c1-4093-85ad-5ad06fbfda5d/base_de_datos_empresas.aspx
dc.relationIPNI: International Plant Nutrition Institute. (s.f.) Fuentes de Nutrientes especificos. Recuperado de: http://www.ipni.net/specifics-es Kataki S., and Baruah D.C. (2018) Prospects and Issues of Phosphorus Recovery as Struvite from Waste Streams. In: Hussain C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_19-1
dc.relationKennedy, C., Cuddihy, J., y Engel-Yan, J. (abril 2007). The changing metabolism of cities. J. Industrial Ecology, 11 (2): 43–59. doi: 10.1162/jie.2007.1107. Kohli, R. y Mittal, K.L.. (2019). Developments in Surface Contamination and Cleaning: Methods for Assessing Surface Cleanliness, 12, 23–105. doi:10.1016/b978-0-12-816081-7.00003-6
dc.relationLahav, O., Telzhensky, M., Zewuhn, A., Gendel, Y., Gerth, J., Calmano, W., Birnhack, L. (abril 2013). Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(Ⅱ) source. Separation and Purification Technology, 108, 103-110. doi: https://doi.org/10.1016/j.seppur.2013.02.002
dc.relationLarriva, N. (2003). Síntesis de la importancia del potasio en el suelo y plantas. La Granja, 21. Recuperado de: https://dialnet.unirioja.es/descarga/articulo/5969765.pdf
dc.relationLatifian, M., Liu, J., and Mattiasson, B. (noviembre, 2012). Struvite-based fertilizer and its physical and chemical properties. Environmental Technology, 33 (24), 2691-2697, DOI: 10.1080/09593330.2012.676073
dc.relationLavanya, A., y Sri Krishnaperumal Thanga, R. (2020). Effective removal of phosphorous from dairy wastewater by struvite precipitation: process optimization using response surface methodology and chemical equilibrium modeling. Separation Science and Technology, 1–16. doi:10.1080/01496395.2019.1709080
dc.relationLe Corre, k., Valsami, E., Hobbs, P. y Parson, S. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283 (3–4),514-522. doi: https://doi.org/10.1016/j.jcrysgro.2005.06.012.
dc.relationLe Corre, K., Valsamijones, E., Hoobbs, P. y Parsons, S.A. (mayo 2009). Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews Environmental Science Technology 39(6), 433-477. doi: https://doi.org/10.1080/10643380701640573.
dc.relationLe Corre, K.S., Jones, E.V., Hobbs, P., Jefferson, B., Parsons, S.A. (junio 2007). Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 41(11), 2449-2456. doi: https://doi.org/10.1016/j.watres.2007.03.002.
dc.relationLi, B., Boiarkina, I., Yu, W., Huang, H. M., Munir, T., Wang, G. Q., y Young, B. R. (2018). Phosphorous recovery through struvite crystallization: Challenges for future design. Science of The Total Environment. doi:10.1016/j.scitotenv.2018.07.166
dc.relationLiu, X. y Wang, J. (2019). Impact of calcium on struvite crystallization in the waste water and its competition with magnesium. Chemical Engineering Journal, 378, 122-121. doi:10.1016/j.cej.2019.122121
dc.relationLiu, Y., Yang, P.J. y Sheng, H. (agosto 2012). Watershed pollution prevention planning and eutrophication control strategy for Lake Dianchi (in Chinese). Acta Scientiae Circumstantiae 32(8), 1962–1972. Recuperado de: https://www.researchgate.net/publication/287550030_Watershed_pollution_prevention_planning_and_eutrophication_control_strategy_for_Lake_Dianchi
dc.relationLlamas, A. M., (2011). Immobilisation du phosphore par précipitation induite dans un procédé aérobie à biomasse granulaire. Université de Toulouse. Recuperado de: https://oatao.univ-toulouse.fr/6971/1/manas_llamas.pdf
dc.relationLozano, D.F. (Enero 08, 2017). Mientras la deforestación aumenta en el país, en el Valle del Cauca disminuye. Valle Invencible. Gobernación del Valle del Cauca. https://www.valledelcauca.gov.co/publicaciones/38663/mientras_la_deforestacin_aumenta_en_el_pas_en_el_valle_del_cauca_disminuye/
dc.relationLui, X., and Wang, J. (diciembre, 2019). Impact of calcium on struvite crystallization in the wastewater and its competition with magnesium. Chemical Engineering Journal, 378. doi: https://doi.org/10.1016/j.cej.2019.122121
dc.relationMalila, R., Lehtoranta, S. y Viskari, E. (febrero 2019). The role of source separation in nutrient recovery e Comparison of alternative wastewater treatment systems. Journal of Cleaner Production, 219, 350-358. doi: 10.1016/j.jclepro.2019.02.024.
dc.relationMarti, N., Pastor, L., Bouzas, A., Ferrer, J. y Seco, A. (abril 2010) “Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation”. Water Research, 41(7), 2371-2379. doi: 10.1016/j.watres.2009.12.043.
dc.relationMatynia, A., Wierzbowska, B., Hutnik, N., Mazienczuk, A., Kozik, A., Piotrowski, K. (2013). Separation of struvite from mineral fertilizer industry wastewater. Procedia Environmental Sciences, 18, 766–775. doi: https://doi.org/10.1016/j.proenv.2013.04.103.
dc.relationMehrban, N., y Bowen, J. (2017). Monitoring biomineralization of biomaterials in vivo. Monitoring and Evaluation of Biomaterials and Their Performance In Vivo, 81–110. doi:10.1016/b978-0-08-100603-0.00005-5
dc.relationMehta, C., Khunjar, W., Nguyen, V., Tait, S., y Batstone, D. (mayo 2015). Technologies to Recover Nutrients from Waste Streams: A Critical Review. Critical Reviews in Environmental Science and Technology, 45 (4), 385–427. doi: https://doi.org/10.1080/10643389.2013.866621.
dc.relationMelia, P. M., Cundy, A. B., Sohi, S. P., Hooda, P. S., y Busquets, R. (2017). Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere, 186, 381–395. doi: https://doi.org/10.1016/j.chemosphere.2017.07.089
dc.relationMetr politan Water R clamation District of Greater Chicago. Ficha informativa: Planta de Tratamiento de Agua Stickney. Recuperado de: https://mwrd.org/sites/default/files/documents/FactSheet_WRPs_Stickney_190703_Spanish.pdf
dc.relationMinisterio de Agricultura. (2016). Principales Cultivos por área sembrada en 2016 en el Valle del Cauca. Recuperado de: http://www.agronet.gov.co/documents/valle%20del%20cauca2016.pdf
dc.relationMorales, C., Camargo, M. A., Molina, F. J. y Fernandez, B. (2019). Effect of the stirring speed on the struvite formation using the centrate from a WWTP. Revista Facultad de Ingeniería Universidad de Antioquia, 92, 42-50. doi: https://www.doi.org/10.17533/udea.redin.20190518
dc.relationMorse, G., Brett, S., Guy, J. y Lester, J.(marzo 1998). Phosphorus removal and recovery technologies. Science of the total environment, 212(1), 69-81. doi: http://dx.doi.org/10.1016/S0048-9697(97)00332-X
dc.relationMullin J. W. (2001). Crystallization. (4a ed.). Oxford: Butterwoth-Heineman. Münch, E.V., and Barr, K. (enero, 2001). Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Research, 35, 151-159. doi: https://doi.org/10.1016/S0043-1354(00)00236-0
dc.relationMuryantoa, S., Bayusenob, A.P., and Supriyoc, E. (Noviembre, 2012). Precipitation of struvite: a feasible approach for scale prevention and nutrient recovery from wastewater. 9th Regional Symposium on Chemical Engineering, Bali, Indonesia.
dc.relationNutrimon. (s.f). Ficha comercial del fosfato diamonico DAP. Recuperado de: http://www.monomeros.com/descargas/FT_FOSFATO%20DIAMONICO_DAP.pdf
dc.relationOkano Y. (2018) Scanning Electron Microscopy. In: The Surface Science Society of Japan (eds) Compendium of Surface and Interface Analysis. Springer, Singapore. doi: https://doi.org/10.1007/978-981-10-6156-1_91
dc.relationOsorio, H., Acelas, N. y López, D. (2014) Phosphorus recovery from biosolid residue after a thermal treatment. DYNA Energía y Sostenibilidad, 3(1), 12p. doi: http://dx.doi.org/10.6036/ES7012
dc.relationOstara Nutrient Recovery Technologies Inc. (2012). Recuperado de: https://ostara.com/
dc.relationOstara. (2017). The MWRD of Greater Chicago’s Nutrient Recovery Facility earns Top Honor from Water Environment Federation. Recuperado de: https://ostara.com/project/mwrd-greater-chicagos-nutrient-recovery-facility-earns-top-honor-water-environment-federation/
dc.relationParsons, S. A.,Wall, F., Doyle, J., Oldring, K. y Churchley, J. (noviembre 2001) Assesing the potential for struvite recovery at sewage treatment works. Environmental Technology, 22(11), 1279-1286. doi: 10.1080/09593332208618188.
dc.relationPastor A. L. (2008). Estudio de la precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH4PO4· 6H2O) (Tesis doctoral). Universidad Politécnica de Valencia. Valencia, España. doi: https://doi.org/10.4995/Thesis/10251/2190
dc.relationPastor, L., Mangin, D., Barat, R., and Seco, A. (septiembre 2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresource Technology, 99(14), 6285-6291. doi: 10.1016/j.biortech.2007.12.003.
dc.relationPastor, L., Mangin, D., Ferrer, J., and Seco, A. (enero 2010). Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresource Technology 101(1),118-125. doi: https://doi.org/10.1016/j.biortech.2009.08.002.
dc.relationPeng, L., Dai, H., Wu, Y., Peng, Y., y Lu, X. (abril 2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 197, 768-781. doi: https://doi.org/10.1016/j.chemosphere.2018.01.098.
dc.relationPérez, D.M. (2012). Estudio de la viabilidad para la recuperación de fósforo en forma de estruvita (NH4MgPO46H2O) a partir de aguas amarillas y aguas residuales domésticas. (Tesis de grado). Universidad de los Andes, Bogotá, Colombia. URI: http://hdl.handle.net/1992/25161
dc.relationPolini, A., y Yang, F. (2017). Physicochemical characterization of nanofiber composites. Nanofiber Composites for Biomedical Applications, 97–115. doi:10.1016/b978-0-08-100173-8.00005-3
dc.relationProchnow, L.I., Clemente, C.A., Dillard, E.F., Melfi, A., and Kauwenbergh, S. (mayo, 2001). Identification of compounds present in single superphosphates produced from brazilian phosphate rocks using sem, edx, and x-ray techniques. Soil Science, 166 (5), 336-344. doi: 10.1097/00010694-200105000-00004
dc.relationQuimifer. (s.f). Ficha técnica sulfato de magnesio. Recuperado de: http://microfertisa.com.co/quimifer/fichas%20tecnicas/FT%20QUIMIFER%20SULFATO%20DE%20MAGNESIO.pdf
dc.relationRahman, M.M., Liu, Y.H., Kwag, J.H. y Ra,C.S (febrero 2011). Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. Jourtalboynal of Hazardous Materials, 186, (2-3), 2026–2030. doi: https://doi.org/10.1016/j.jhazmat.2010.12.103
dc.relationRahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M., Ra, C.S. (enero 2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization - a review. Arabian Journal of Chemistry, 7(1), 139-155. doi: https://doi.org/10.1016/j.arabjc.2013.10.007.
dc.relationReyes, Y., Vergara, I., Torres, O.E., Díaz, M., y González, E.E. (julio, 2016). Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria. Revista Ingeniería, Investigación y Desarrollo, 16 (2), 66-77. ISSN Online 2422-4324
dc.relationRömer, W. (diciembre 2006) “Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch”. Journal of Plant Nutrition and Soil Science, 169(6), 826 - 832. doi: 10.1002/jpln.200520587.
dc.relationSánchez, G. (2016). Ecotoxicología del cadmio: Riesgo para la salud de la utilización de suelos ricos en cadmio. (Trabajo de grado). Universidad Complutense, Madrid, España. Recuperado de: http://147.96.70.122/Web/TFG/TFG/Memoria/GARA%20SANCHEZ%20BARRON.pdf
dc.relationSanz, M. (2014). Estudio de la recuperación de fósforo en la edar de arazuri-pamplona. Universitat Politecnica de Valencia. Valencia, España: Recuperado de: https://riunet.upv.es/bitstream/handle/10251/57813/MEMORIA%20TFM.pdf?sequence=1
dc.relationSaxena, V., Shukla, I., y Pandey, L. M. (2019). Hydroxyapatite: an inorganic ceramic for biomedical applications. Materials for Biomedical Engineering, 205–249. doi:10.1016/b978-0-12-816909-4.00008-7
dc.relationSchoumans, O.F., Bouraoui, F., Kabbe, C., Oenema, O. y van Dijk, K.C. (marzo 2015). Phosphorus management in Europe in a changing world. Ambio, 44(2), 180–192. doi: 10.1007/s13280-014-0613-9.
dc.relationSecretaría de Ambiente, Agricultura y Pesca. (2018). Informe a la asamblea departamental del Valle del Cauca. Recuperado de: http://asamblea.valledelcauca.gov.co/info/tmp/Proposicion_002.2018_-_Respuesta_1.pdf
dc.relationSena, M. y Hicks, A. (diciembre 2018) Life cycle assessment review of struvite precipitation in wastewater treatment. Resources, Conservation & Recycling, 139, 194–204. doi: https://doi.org/10.1016/j.resconrec.2018.08.009.
dc.relationSena, M., Seib, M., Noguera, D. R., y Hicks, A. (2020). Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment. Journal of Cleaner Production, 280, 124222. doi: https://doi.org/10.1016/j.jclepro.2020.124222
dc.relationSengupta, S., Nawaz, T., y Beaudry, J. (agosto 2015). Nitrogen and Phosphorus Recovery from Wastewater. Current Pollution Reports, 1(3), 155–166. doi: 10.1007/s40726-015-0013-1.
dc.relationShih, Y., Abarca, R., De Luna, M., Huang, Y. y Lu, M. (abril 2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466-473. doi: 10.1016/j.chemosphere.2017.01.088.
dc.relationShu, L., Schneider, P., Jegatheesan, V. y Johnson, J. (2006) “An economic evaluation of phosphorus recovery as struvite from digester supernatant”. Bioresource Technology, 97 (17), 2211- 2216. doi: https://doi.org/10.1016/j.biortech.2005.11.005.
dc.relationSong, Y., Qiu, G., Yuan, P., Cui, X., Peng, J., Zeng, P., Duan, L., Xiang, L., Qian, F. (junio 2011). Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. Journal of Hazardous Materials, 190(1–3), 140-149. doi: https://doi.org/10.1016/j.jhazmat.2011.03.015.
dc.relationStratful, I., Scrimshaw, M.D., Lester, J.N. (diciembre 2001). Conditions influencing the precipitation of magnesium ammonium phosphate. Water Research, 35(17), 4191-4199. doi: https://doi.org/10.1016/S0043-1354(01)00143-9.
dc.relationSuarez, C. L. (2011) Tratamientos de aguas residuales municipales en el Valle del Cauca. Universidad del Valle. Recuperado de: https://bibliotecadigital.univalle.edu.co/bitstream/handle/10893/10174/7720-0445526.pdf?sequence=1&isAllowed=y
dc.relationSuschka, J. y Popławski, S. (2003). Ammonia removal from digested sludge supernatant. University of Bielsko-Biała, Institute of Environmental Protection and Engineering. Willowa, 2, 43-309.
dc.relationSuzuki, K., Tanaka, Y., Osada, T., Waki, M. (julio 2002). Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Research, 36 (12), 2991-2998. doi: 10.1016/s0043-1354(01)00536-x.
dc.relationSzymanska, M., Szara, E., Was, A., Sosulski, T., van Pruissen, G., and Cornelissen, R. (enero, 2019). Struvite—An Innovative Fertilizer from Anaerobic Digestate Produced in a Bio-Refinery. Energies 2019, 12 (2), 296; doi:10.3390/en12020296
dc.relationTalboys, P.J., James, H., Tiina, R., Healey, J.R., Jones, D.L. y Withers, P.J.(abril 2016). Struvite: a slow-release fertiliser for sustainable phosphorus management?. Plant Soil , 401 (1–2), 109–123. doi: 10.1007/s11104-015-2747-3
dc.relationTarayre, C., De, C.L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M., Delvigne, F. (abril 2016). New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste. Bioresource Technology, 206, 264-274. doi: https://doi.org/10.1016/j.biortech.2016.01.091
dc.relationTran, A. T. K., Zhang, Y., De Corte, D., Hannes, J.-B., Ye, W., Mondal, P., … Van der Bruggen, B. (2014). P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 77, 140–151. doi: https://doi.org/10.1016/j.jclepro.2014.01.069
dc.relationUeno, Y., and Fujii, M. (mayo, 2010). Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, 22 (11), 1373-1381. doi: https://doi.org/10.1080/09593332208618196
dc.relationUysal, A., Demir, S., Sayilgan, E., Eraslan, F., and Kucukyumuk, Z., (marzo, 2014). Optimization of struvite fertilizer formation from baker's yeast wastewater: growth and nutrition of maize and tomato plants. Environ. Sci. Pollut. R. Inter. 21 (5), 3264–3274. doi: 10.1007/s11356-013-2285-6.
dc.relationUysal, A., Yilmazel, Y.D., Demirer, G.N. (septiembre 2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181(1–3), 248-254. doi: https://doi.org/10.1016/j.jhazmat.2010.05.004
dc.relationValderrama, A.C. (2015). Simulación de la implantación de diferentes tecnologías de recuperación de fósforo en una EDAR. (Trabajo final de carrera). Escuela técnica superior de ingenieros de minas y energía, Madrid, España. URI:http://hdl.handle.net/2117/85712
dc.relationVan Loosdrecht, M.C.M., y Brdjanovic, D., (junio 2014). Anticipating the next century of wastewater treatment. Science, 344 (6169), 1452–1453. doi: 10.1126/science.1255183.
dc.relationVasconcelos Corrêa, C. (2013). Estudio de la cristalización y recuperación de hidroxiapatita en un reactor de tanque agitado. Universitat Politècnica de Catalunya ETSEIB - Escola Tècnica Superior d'Enginyeria Industrial de Barcelona. URI: http://hdl.handle.net/2099.1/20563
dc.relationVásquez S. N., Mora A. L. E. Gandini A. M. A. (2017). Integral design of wastewater management systems: Challenges and opportunities to contribute to environmental sustainability. 23rd International Sustainable Development Research Society Conference. International Sustainable Development Research Society – ISDRS. Universidad de los Andes. 14th – 16th of June 2017 - Bogotá, Colombia.
dc.relationVásquez, N., Larrahondo, D., y Mazuera, H. (2018). Vásquez, N., Larrahondo, D., y Mazuera, H. (2018). Análisis de la viabilidad técnica para la recuperación de estruvita e hidroxiapatita a partir del agua residual generada en campus universitarios: Caso de estudio Universidad Autónoma. (Pasantia de investigación). Universidad Autonoma de Occidente.Cali. Colombia. Recuperado de: https://red.uao.edu.co/bitstream/handle/10614/11707/T08796.pdf;
dc.relationEn Serna, E. (2018). Formación formativa en ingeniería. (96-102) Medellín, Colombia: Editorial IAI. Wakeford, J.P. (octubre 1911). Trials of sewage precipitants at Wakefeield. Eng. Record 64. doi: https://doi.org/10.1177/146642401103201005
dc.relationWanat, D. (2017). Eliminación de fósforo en aguas de proceso de concentración de roca fosfórica por el proceso de la estruvita. (Proyecto fin de carrera). Escuela técnica superior de ingenieros de minas y energía, Madrid, España. Recuperado de: http://oa.upm.es/48727/1/PFG_DOMINIK_WANAT.pdf
dc.relationWang, L. y Nancollas, G.H. (febrero 2009). Cheminform abstract: calcium orthophosphates: crystallization and dissolution. ChemInform, 40(5), 4628-4669. doi: 10.1002/chin.200905233
dc.relationWardle, T. (1893). On Sewage Treatment and Disposal, John Heywood, London, p. 43.
dc.relationWarmadewanthi, and Bachtiar, Yahdini. (2019). Study of struvite crystallization from fertilizer industry wastewater by using fluidized bed reactor. In MATEC Web of Conferences, 276, 06006. EDP Sciences. doi: https://doi.org/10.1051/matecconf/201927606006
dc.relationWeb Mineral. (s.f) Struvite Mineral Data. Recuperado de: http://webmineral.com/data/Struvite.shtml#.YBcIwehKjIV
dc.relationWendling, L.A., Blomberg, P., Sarlin, T., Priha, O., y Arnold, M. (2013). Phosphorus sorption and recovery using mineral-based materials: Sorption mechanisms and potential phytoavailability. Applied Geochemistry, 37, 157–169. doi:https://doi.org/10.1016/j.apgeochem.2013.07.016
dc.relationWithers, P.J., Sylvester-Bradley, R., Jones, D., Healey, J. y Talboys, P. (junio 2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environment Science & Technology, 48 (12), 6523–6530. doi: 10.1021/es501670j.
dc.relationYe, X., Ye, Z.L., Lou, Y., Pan, S., Wang, X., Wang, M.K., Chen, S. (julio 2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. doi: https://doi.org/10.1016/j.powtec.2016.03.022.
dc.relationYetilmezsoy, K., Ilhan, F., Kocak, E., y Akbin, H. M. (2017). Feasibility of struvite recovery process for fertilizer industry: A study of financial and economic analysis. Journal of Cleaner Production, 152, 88–102. doi: doi:10.1016/j.jclepro.2017.03.106
dc.relationYPF. (s.f).Ficha comercial Fertilizantes Fosforados: Superfosfato Simple 0210 12S. Recuperado de: http://www.caon.com.ar/fichas/Superfosfato-simple.pdf
dc.relationZhang, T., Ding, L., Ren, H. (julio 2009). Pretreatment of ammonium removal from landfill leachate by chemical precipitation. Journal of Hazardous Materials, 166(2–3), 911-915. doi: https://doi.org/10.1016/j.jhazmat.2008.11.101
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2021
dc.subjectIngeniería Ambiental
dc.subjectRecuperación de nutrientes
dc.subjectUsos de estruvita
dc.subjectCristalización
dc.subjectPrecipitación química
dc.subjectDRX
dc.subjectSEM
dc.subjectEDS
dc.titleAnálisis de uso potencial de un lodo rico en estruvita obtenido a partir de procesos de precipitación química y cristalización para el tratamiento de agua residual municipal
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución