dc.contributorIEEE Sensors Journal
dc.creatorGutierrez Rivera, Miguel
dc.creatorAlmanee, M.
dc.creatorRojas Laguna, R.
dc.creatorJauregui Vázquez, Daniel
dc.creatorGarcia Mina, Diego Felipe
dc.creatorSierra Hernández, Juan M.
dc.creatorEstudillo-Ayala, Julián Moisés
dc.creatorRojas Laguna, Roberto
dc.date.accessioned2021-11-03T21:18:43Z
dc.date.accessioned2022-09-22T18:43:28Z
dc.date.available2021-11-03T21:18:43Z
dc.date.available2022-09-22T18:43:28Z
dc.date.created2021-11-03T21:18:43Z
dc.date.issued2020-05-01
dc.identifier15581748
dc.identifierhttps://hdl.handle.net/10614/13397
dc.identifier10.1109/JSEN.2019.2944998
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457298
dc.description.abstractThis manuscript experimentally validates a thin-film polymer andmultimode fiber optic interaction-based low-cost optical fiber displacement sensor. The sensing setup is operated by deflecting a commerciallyMylar® polymer film using multimode optical fiber. The sensor exhibits a higher sensitivity of 24nm/μmand resolution of 41.6nm. The sensor’s analyses also demonstrate good polynomial approximation, with a maximal adjusted square of R = 0.9801, and high stability, in which minimal power (0.4dB-Hour) and wavelength (<2nm-Hour) variations are observed. Moreover, thermal experiments prove that the sensor has lower temperature traits (0.05μm/ C), and this parameter can be distinguished considering the wavelength shifting direction. The simplicity of the scheme, as well as the cost of the elements involved, make this technique a reliable alternative to detect microdisplacements.
dc.languageeng
dc.publisherIEEE
dc.relationVolumen 20, número 9 (2020)
dc.relation4725
dc.relation9
dc.relation4719
dc.relation20
dc.relationGutiérrez Rivera, M., Jauregui Vázquez, D., García Mina, D. F., Sierra Hernández, J. M., Estudillo Ayala, J. M., Almanee, M., Rojas Laguna, R. (2020). Fiber optic fabry-perot micro-displacement sensor based on low-cost polymer film. IEEE Sensors Journal. (Vol. 20 (9), pp. 4719-4725. doi: 10.1109/JSEN.2019.2944998
dc.relationIEEE Sensors Journal
dc.relation[1] Y. Zhao, Y. Yuan, W. Gan, and M. Yang, “Optical fiber Fabry–Pérot humidity sensor based on polyimide membrane: Sensitivity and adsorption kinetics,” Sens. Actuators A, Phys., vol. 281, pp. 48–54, Oct. 2018.
dc.relation[2] Y. Yu et al., “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt. Express, vol. 18, no. 15, pp. 15383–15388, 2010.
dc.relation[3] Z. Zhu, L. Liu, Z. Liu, Y. Zhang, and Y. Zhang, “High-precision microdisplacement optical-fiber sensor based on surface plasmon resonance,” Opt. Lett., vol. 42, no. 10, pp. 1982–1985, 2017.
dc.relation[4] Y. Wei et al., “A new application of optical fiber surface plasmon resonance for micro-displacement measurement,” Sens. Actuators A, Phys., vol. 285, pp. 216–223, Jan. 2019.
dc.relation[5] P. Zu, C. C. Chan, T. Gong, Y. Jin, W. C.Wong, and X. Dong, “Magnetooptical fiber sensor based on bandgap effect of photonic crystal fiber infiltrated with magnetic fluid,” Appl. Phys. Lett., vol. 101, no. 24, 2012, Art. no. 241118.
dc.relation[6] J. N. Dash, R. Jha, and S. Dass, “Ultrasensitive displacement sensor based on photonic crystal fiber modal interferometer,” in Proc. Adv. Photon., 2014, vol. 40, no. 4, pp. 1–3.
dc.relation[7] J. Chen, J. Zhou, and Z. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 25, no. 23, pp. 2354–2357, Dec. 1, 2013.
dc.relation[8] X. Dong, Y. Liu, Z. Liu, and X. Dong, “Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor,” Opt. Commun., vol. 192, nos. 3–6, pp. 213–217, Jun. 2001.
dc.relation[9] R. Fan, Y. Luo, L. Li, Q. Wu, Z. Ren, and B. Peng, “Large-range fiber microsphere micro-displacement sensor,” Opt. Fiber Technol., vol. 48, pp. 173–178, Mar. 2019.
dc.relation[10] D. Su, X. Qiao, W. Bao, F. Chen, and Q. Rong, “Orientation-dependent fiber-optics displacement sensor by a grating inscription within fourmode fiber,” Opt. Laser Technol., vol. 115, no. Nov. 2018, pp. 229–232, 2019.
dc.relation[11] A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interferencebased fiber-optic displacement sensor,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1129–1131, Aug. 2003.
dc.relation[12] H. A. Rahman, S. W. Harun, M. Yasin, and H. Ahmad, “Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 5, pp. 1529–1533, Sep. 2012.
dc.relation[13] H. A. Rahman, S. W. Harun, N. Saidin, M. Yasin, and H. Ahmad, “Fiber optic displacement sensor for temperature measurement,” IEEE Sensors J., vol. 12, no. 5, pp. 1361–1364, May 2012.
dc.relation[14] H. A. Rahman, S. W. Harun, M. Batumalay, F. A. Muttalib, and H. Ahmad, “Fiber optic displacement sensor using multimode plastic fiber probe and tooth surface,” IEEE Sensors J., vol. 13, no. 1, pp. 294–298, Jan. 2013.
dc.relation[15] P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett., vol. 94, no. 13, Mar. 2009, Art. no. 131110.
dc.relation[16] Z. Fang, K. Chin, R. Qu, H. Cai, and K. Chang “Extrinsic fiber Fabry–Pérot interferometer sensor,” in Fundamentals of Optical Fiber Sensors. Hoboken, NJ, USA: Wiley, 2012, pp. 395–426.
dc.relation[17] K. T. V. Grattan, L. S. Grattan, and B. T. Meggitt, Optical Fiber Sensor Technology: Fundamentals. New York, NY, USA: Springer, 2000.
dc.relation[18] D. A. Krohn, Fiber Optic Sensors: Fundamentals and Applications. Paris, France: ISA, 2000.
dc.relation[19] W.-H. Tsai and C.-J. Lin, “A novel structure for the intrinsic Fabry–Pérot fiber-optic temperature sensor,” J. Lightw. Technol., vol. 19, no. 5, pp. 682–686, May 2001.
dc.relation[20] C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett., vol. 18, no. 1, pp. 78–80, 1993.
dc.relation[21] A. Koch and R. Ulrich, “Fiber-optic displacement sensor with 0.02 μm resolution by white-light interferometry,” Sens. Actuators A, Phys., vol. 25, nos. 1–3, pp. 201–207, 1990.
dc.relation[22] Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Pérot interferometric sensors,” IEEE Photon. Technol. Lett., vol. 20, no. 2, pp. 75–77, Jan. 15, 2008.
dc.relation[23] M. Han and A. Wang, “Mode power distribution effect in white-light multimode fiber extrinsic Fabry–Pérot interferometric sensor systems,” Opt. Lett., vol. 31, no. 9, pp. 1202–1204, 2006.
dc.relation[24] X. Wu and O. Solgaard, “Short-cavity multimode fiber-tip Fabry–Pérot sensors,” Opt. Express, vol. 21, no. 12, pp. 14487–14499, 2013.
dc.relation[25] M. Han and A. Wang, “Exact analysis of low-finesse multimode fiber extrinsic Fabry–Pérot interferometers,” Appl. Opt., vol. 43, no. 24, pp. 4659–4666, 2004.
dc.relation[26] B. H. Lee et al., “Interferometric fiber optic sensors,” Sensors, vol. 12, no. 3, pp. 2467–2486, 2012.
dc.relation[27] D. Hu, R. Y.-N. Wong, and P. P. Shum, Photonic Crystal Fiber-Based Interferometric Sensors. London, U.K.: IntechOpen Limited, 2018.
dc.relation[28] J. G. V. Teixeira, I. T. Leite, S. Silva, and O. Frazão, “Advanced fiberoptic acoustic sensors,” Photon. Sensors, vol. 4, no. 3, pp. 198–208, Sep. 2014.
dc.relation[29] M. Hernaez, R. C. Zamarreño, S. Melendi-Espina, L. R. Bird, A. G. Mayes, and F. J. Arregui, “Optical fibre sensors using graphenebased materials: A review,” Sensors, vol. 17, no. 1, p. 155, 2017.
dc.relation[30] E. Cibula and D. Ðonlagi´c, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt., vol. 44, no. 14, pp. 2736–2744, 2005.
dc.relation[31] Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Pérot acoustic sensor,” Chin. Opt. Lett., vol. 8, no. 3, pp. 266–269, 2010.
dc.relation[32] P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Pérot interferometer,” Appl. Opt., vol. 35, no. 4, pp. 663–675, 1996.
dc.relation[33] F. Xu et al., “High-sensitivity Fabry–Pérot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett., vol. 37, no. 2, pp. 133–135, 2012.
dc.relation[34] J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett., vol. 30, no. 24, pp. 3269–3271, Dec. 2005.
dc.relation[35] Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 447–449, Feb. 2005.
dc.relation[36] É. Pinet, E. Cibula, and D. Ðonlagi´c, “Ultra-miniature all-glass Fabry–Pérot pressure sensor manufactured at the tip of a multimode optical fiber,” Proc. SPIE, vol. 6770, Sep. 2007, Art. no. 67700U.
dc.relation[37] K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng., vol. 15, no. 1, pp. 71–75, Oct. 2004.
dc.relation[38] R. G. Minasamudram, P. Arora, G. Gandhi, A. S. Daryoush, M. A. El-Sherif, and P. A. Lewin, “Thin film metal coated fiber optic hydrophone probe,” Appl. Opt., vol. 48, no. 31, pp. G77–G82, 2009.
dc.relation[39] J. N. Reddy, Theory and Analysis of Elastic Plates and Shells. Boca Raton, FL, USA: CRC Press, 2006.
dc.relation[40] W. Urba´nczyk and K. Pietraszkiewicz, “Measurements of stress anisotropy in fiber preform: Modification of the dynamic spatial filtering technique,” Appl. Opt., vol. 27, no. 19, pp. 4117–4122, 1988.
dc.relation[41] F. Sanaâ, J. F. Palierne, and M. Gharbia, “Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film,” Opt. Mater., vol. 57, pp. 193–201, Jul. 2016.
dc.relation[42] L. Qi, C.-L. Zhao, Y. Wang, J. Kang, Z. Zhang, and S. Jin, “Compact micro-displacement sensor with high sensitivity based on a longperiod fiber grating with an air-cavity,” Opt. Express, vol. 21, no. 3, pp. 3193–3200, 2013.
dc.relation[43] B. Song et al., “Liquid-crystal based Fabry–Pérot interferometer displacement sensor,” Appl. Opt., vol. 58, no. 2, pp. 410–414, 2019.
dc.relation[44] C. Teng et al., “Displacement sensor based on a small U-shaped singlemode fiber,” Sensors, vol. 19, no. 11, p. 2531, 2019.
dc.relation[45] X. Yin, Y. Shen, W. Wang, Z. Shao, and Q. Rong, “Highly sensitive displacement sensor using open fiber-optics air bubbles,” IEEE Sensors J., vol. 19, no. 20, pp. 9249–9254, Oct. 2019. doi: 10.1109/JSEN. 2019.2924646.
dc.relation[46] V. Venkatraman and B.-K. Alsberg, “Designing high-refractive index polymers using materials informatics,” Polymers, vol. 10, no. 1, p. 103, 2018.
dc.relation[47] H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, “Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range,” J. Lightw. Technol., vol. 36, no. 24, pp. 5881–5886, Dec. 2018.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - IEEE, 2020
dc.titleFiber optic fabry-perot micro-displacement sensor based on low-cost polymer film
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución