dc.creatorFranco, Ediguer
dc.creatorAndrade Agudelo, Marco Aurelio
dc.creatorAdamowski, Julio Cezar
dc.creatorBuiochi, Flávio
dc.date.accessioned2020-02-17T18:17:35Z
dc.date.available2020-02-17T18:17:35Z
dc.date.created2020-02-17T18:17:35Z
dc.date.issued2011-12
dc.identifierhttp://red.uao.edu.co//handle/10614/11910
dc.description.abstractLa respuesta al impulso del potencial de velocidad y los métodos de representación discreta se utilizaron para modelar el campo acústico irradiado por transductores y matrices ultrasónicos. El primer método se ocupa del cálculo de la respuesta exacta al impulso, en el que las soluciones solo son posibles para geometrías simples, como el pistón circular. El segundo método es una solución aproximada basada en la discretización de la apertura acústica en pequeñas áreas elementales, cada una de las cuales irradia una onda esférica. Mediante el uso de transductores circulares, que pueden considerarse pistones circulares, se llevaron a cabo muchas simulaciones comparando los métodos. Se analizó la relación entre el costo computacional y la precisión, estableciendo así los niveles de discretización temporal y espacial. Las simulaciones se realizaron utilizando el software Matlab y los resultados se compararon con mediciones experimentales que mostraban una buena concordancia. Los resultados experimentales se obtuvieron mediante un sistema de escaneo. Se midió el campo acústico irradiado por un transductor circular de 1 MHz, así como una matriz de 3,5 MHz de 16 elementos sumergidos en agua. El campo acústico irradiado por el arreglo fue simulado y medido con focalización en un radio de 30 mm con deflexiones de 0º y 20º.
dc.description.abstractThe impulse response of the velocity potential and the discrete representation methods were used in order to model the acoustic field radiated by ultrasonic transducers and arrays. The first method deals with the calculation of the exact impulse response, in which solutions are possible only for simple geometries, such as the circular piston. The second method is an approximated solution based on the discretization of the acoustic aperture in small elementary areas, each of them radiating a spherical wave. By using circular transducers, which can be considered circular pistons, many simulations comparing the methods were carried out. The relation between the computational cost and the precision was analyzed, thus establishing the time and space discretization levels. The simulations were made using the Matlab software and the results were compared to experimental measurements showing good agreement. The experimental results were obtained using a scanning system. The acoustic field radiated from a 1 MHz circular transducer was measured as well as a 3.5 MHz array of 16 elements both immersed in water. The acoustic field radiated by the array was simulated and measured with focalization on a radius of 30 mm with deflections of 0º and 20º
dc.languageeng
dc.publisherspringer
dc.relation416
dc.relation4
dc.relation408
dc.relation33
dc.relationFranco, E. E., Andrade, M. A. B., Adamowski, J. C., & Buiochi, F. (2011). Acoustic beam modeling of ultrasonic transducers and arrays using the impulse response and the discrete representation methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 33(4), 408–416. http://red.uao.edu.co//handle/10614/11910
dc.relationJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.relationBelgroune, D., Belleval, J.F., and Djelouah, H., 2008, “A theoretical study of ultrasonic wave transmission through a fluid-solid interface”,Ultrasonics, 48, Issue 3, pp. 220-230.
dc.relationBuiochi, F., Martínez, O., Gómez-Ullate , L., and Montero de Espinoza,F., 2004, “A computational method to calculate the longitudinal wave evolution caused by interfaces between isotropic media”, IEEE Trans.Ultrason., Ferroelect., Freq. Contr., Vol. 51, No. 2, pp. 181-192.
dc.relationDjelouah, H. and Baboux, J.C., 1992, “Transient ultrasonic field radiated by a circular transducer in a solid medium”, J. Acoust. Soc. Amer,Vol. 92, Issue 5, pp. 2932-2941.
dc.relationGoodman, J.W., 2004, “Introduction to Fourier Optics”, third edition,Ed. Roberts & Company, 491 p.
dc.relationJensen, J.A., 1996, “Ultrasound field from triangular apertures”, J. Acoust.Soc. Amer., Vol. 100, Issue 4, pp. 2049-2056.
dc.relationJensen, J.A. and Svendsen, N.B., 1992, “Calculation of pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 39, No. 2, pp. 262-267.
dc.relationLasota, H., Salamon, R., and Delannoy, B., 1984, “Acoustic diffraction analysis by the impulse method: A line impulse response approach”, J.Acoust. Soc. Amer., Vol. 76, Issue 1, pp. 280-290.
dc.relationLockwood, J.C. and Willette, J.G., 1973, “High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston”, J. Acoust. Soc. Amer., Vol. 53, Issue 3, pp. 735-741.
dc.relationMartínez, O., Gómez-Ullate, L. and Montero de Espinosa, F.R., 2001,“Computation of the ultrasonic field radiated by segmented-annular arrays”,Journal of Computational Acoustics, Vol. 9, No. 3, pp. 757-772.
dc.relationParrilla, M.R., 2004, “Conformación de haces ultrasónicos mediante muestreo selectivo con codificación delta”, PhD thesis, Universidad Politécnica de Madrid, Madrid, Spain, 245 p.
dc.relationPiwakowski, B. and Delannoy, B., 1989, “Method for computing special pulse response: Time domain approach”, J. Acoust. Soc. Amer., Vol. 86,Issue 6, pp. 2422-2432.
dc.relationPiwakowski, B. and Sbai, K., 1999, “A new approach to calculate the field radiated from arbitrarily structured transducer arrays”, IEEE Trans.Ultrason., Ferroelect., Freq. Contr., Vol. 46, No. 2, pp. 422-439.
dc.relationRobinson, D.E., Less, S. and Bess, L., 1974, “Near field transient radiation patterns for circular pistons”, IEEE Transansactions on Acoustics,Speech and Signal Processing, Vol. 22, No. 6, pp. 39-403.
dc.relationSan Emeterio, J.L. and Gómez-Ullate, L., 1992, “Diffraction impulse response of rectangular transducers”, J. Acoust. Soc. Amer., Vol. 92, Issue 2,pp. 651-662.
dc.relationStephanishen, P.R., 1971, “Transient radiation from pistons in an infinite planar baffle”, J. Acoust. Soc. Amer., Vol. 49, Issue 5B, pp. 1629-1638.
dc.relationWeight, J.P., 1984, “Ultrasonic beam structures in fluid media”, J. Acoust.Soc. Amer., Vol. 76, Issue 4, pp. 1184-1191.
dc.relationJournal of the Brazilian Society of Mechanical Sciences and Engineering. Volumen33, número 4, (octubre-diciembre 2011); paginas 408-416.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.subjectTransductores ultrasónicos
dc.subjectUltrasonic transducer
dc.subjectAcoustic field
dc.subjectArray
dc.subjectImpulse response
dc.subjectDiscrete representation method
dc.titleAcoustic beam modeling of ultrasonic transducers and arrays using the impulse response and the discrete representation methods
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución