dc.contributorElsevier
dc.creatorCardona Salgado, Daiver
dc.creatorCampo Duarte, Doris Elena
dc.creatorSepulveda Salcedo, Lilian Sofia
dc.creatorVasilieva, Olga
dc.date.accessioned2021-09-29T20:40:40Z
dc.date.accessioned2022-09-22T18:43:13Z
dc.date.available2021-09-29T20:40:40Z
dc.date.available2022-09-22T18:43:13Z
dc.date.created2021-09-29T20:40:40Z
dc.date.issued2020-01-09
dc.identifier0307904X
dc.identifierhttps://hdl.handle.net/10614/13290
dc.identifier10.1016/j.apm.2020.01.032
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457227
dc.description.abstractAedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the virus to human hosts. Thanks to this important discovery, Wolbachia-based biocontrol is now accepted as an ecologically friendly and potentially cost-effective method for prevention and control of dengue and other arboviral infections. In this paper, we propose a dengue transmission model that accounts for the presence of wild Aedes aegypti females and those deliberately infected with wMelPop Wolbachia strain, which is regarded as the best blocker of dengue and other arboviral infections. However, wMelPop strain of Wolbachia considerably reduces the individual fitness of mosquitoes, what makes rather challenging to achieve the gradual extrusion of wild mosquitoes and ensure their posterior replacement by Wolbachia-carriers. Nonetheless, this obstacle have been overcome by employing the optimal control approach for design of specific intervention programs based on daily releases of Wolbachia-carrying mosquitoes. The resulting optimal release programs ensure the population replacement and eventual local extinction of wild mosquitoes in the finite time and also entail a significant reduction in the number of expected dengue infections among human hosts under the long-term settings
dc.languageeng
dc.publisherElsevier
dc.publisherNew York
dc.relationVolumen 82 (2020)
dc.relation149
dc.relation125
dc.relationVolumen 82
dc.relationCardona Salgado, D., Campo Duarte, D. E., Sepulveda Salcedo, L.S., Vasilieva O. (2020). Wolbachia based biocontrol for dengue reduction using dynamic optimization approach. Elsevier. Applied Mathematical Modelling (Vol.82), pp. 125-149. https://doi.org/10.1016/j.apm.2020.01.032
dc.relationApplied Mathematical Modelling
dc.relation[1] J. Brown, C. McBride, P. Johnson, S. Ritchie, C. Paupy, H. Bossin, J. Lutomiah, I. Fernandez-Salas, A. Ponlawat, A. Cornel, W. Black, N. Gorro- chotegui-Escalante, L. Urdaneta-Marquez, M. Sylla, M. Slotman, K. Murray, C. Walker, J. Powell, Worldwide patterns of genetic differentiation imply multiple “domestications”of Aedes aegypti, a major vector of human diseases, Proc. R. Soc. B Biol. Sci. 278 (1717) (2011) 2446–2454.
dc.relation[2] A. Clements, The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, CABI, Cambridge MA, USA, 2011.
dc.relation[3] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens 6 (4) (2010) e10 0 0833.
dc.relation[4] F. Frentiu, T. Zakir, T. Walker, J. Popovici, A. Pyke, A. van den Hurk, E. McGraw, S. O’Neill,Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Negl. Trop. Diseases 8 (2) (2014) 1–10. [5] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, S. O’Neill, Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell 139 (7) (2009) 1268–1278.
dc.relation[6] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (7361) (2011) 450–453.
dc.relation[7] Y. Ye, A. Carrasco, F. Frentiu, S. Chenoweth, N. Beebe, A. van den Hurk, C. Simmons, S. O’Neill, E. McGraw, Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti, PLoS Neglected Trop. Diseases 9 (6) (2015) 1–19.
dc.relation[8] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol. 34 (2) (2018) 102–113.
dc.relation[9] J. Bull, M. Turelli, Wolbachia versus dengue evolutionary forecasts, Evolut. Med. Public Health 2013 (1) (2013) 197–207.
dc.relation[10] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. Ryan, S.L. O’Neill, E. McGraw, V. Long, L. Dui, H. Nguyen, N. Chau, B. Wills, C. Simmons, Modeling the impact on virus transmission of Wolbachia -mediated blocking of dengue virus infection of Aedes aegypti, Sci. Translat. Med. 7 (279) (2015) 279ra3.
dc.relation[11] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, S. O’Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476 (7361) (2011) 454–457.
dc.relation[12] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases 30 (1) (2017) 108.
dc.relation[13] M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, E. Popovici J.and Rancès, B. Wee, J. Pavlides, M. Sullivan, S. Beatson, A. Lane, M. Sidhu, C. McMeniman, E. McGraw, S. O’Neill, Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut. 5 (11) (2013) 2189–2204.
dc.relation[14] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, S. O’Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science 323 (5910) (2009) 141–144.
dc.relation[15] C. McMeniman, S. O’Neill,A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence, PLoS Negleted Trop. Diseases 4 (7) (2010) e748.
dc.relation[16] S. Ritchie, M. Townsend, C. Paton, A. Callahan, A. Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negleted Trop. Diseases 9 (7) (2015) e0 0 03930.
dc.relation[17] P. Ross, N. Endersby, H. Yeap, A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia -infected Aedes aegypti, Am. J. Trop. Med. Hyg. 91 (1) (2014) 198–205.
dc.relation[18] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Aggarwal, M. Schwemmer, C. Hom, R. Grosberg, S. Schreiber, Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theor. Biol. 297 (2012) 26–32.
dc.relation[19] T. Nguyen, H. Le Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, H. Kay, I. Iturbe-Or- maetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. O’Neill, A. Hoff- mann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Paras. Vect. 8 (1) (2015) 563.
dc.relation[20] H. Yeap, J. Axford, J. Popovici, N. Endersby, I. Iturbe-Ormaetxe, S. Ritchie, A. Hoffmann, Assessing quality of life-shortening Wolbachia -infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments, Paras. Vect. 7 (1) (2014) 1.
dc.relation[21] T. Ruang-Areerate, P. Kittayapong, Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors, Proc. Natl. Acad. Sci. 103 (33) (2006) 12534–12539.
dc.relation[22] N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.
dc.relation[23] D. Campo-Duarte, D. Cardona-Salgado, O. Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inf. Sci. 11 (4) (2017) 1011–1027.
dc.relation[24] H. Hughes, N. Britton, Modelling the use of Wolbachia to control dengue fever transmission, Bull. Math. Biol. 75 (5) (2013) 796–818.
dc.relation[25] M. Ndii, R. Hickson, D. Allingham, G. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci. 262 (2015) 157–166.
dc.relation[26] W. Bock, Y. Jayathunga, Optimal control of a multi-patch dengue model under the influence of Wolbachia bacterium, Math. Biosci. 315 (2019) 108219.
dc.relation[27] J. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.)., Mosquito News 25 (4) (1965) 434–439.
dc.relation[28] P.-A. Bliman, M.S. Aronna, F.C. Coelho, M.A.H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol. 76 (5) (2018) 1269–1300.
dc.relation[29] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females, Int. J. Pure Appl. Math. 112 (2) (2017) 219–238.
dc.relation[30] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol. 76 (7) (2018) 1907–1950.
dc.relation[31] J. Farkas, S. Gourley, R. Liu, A.-A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, J. Math. Biol. 75 (3) (2017) 621–647.
dc.relation[32] M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution 64 (1) (2010) 232–241.
dc.relation[33] S. Dobson, C. Fox, F. Jiggins, The effect of Wolbachia -induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proc. R. Soc. Lond. B Biol. Sci. 269 (1490) (2002) 437–445.
dc.relation[34] N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series, Springer, London, UK, 2012.
dc.relation[35] M. Grunnill, M. Boots, How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol. 53 (1) (2015) 1–19.
dc.relation[36] E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theoret. Biol. 453 (2018) 14–39.
dc.relation[37] A. Turley, L. Moreira, S. O’Neill, E. McGraw,Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti, PLoS Neglect. Trop. Diseases 3 (9) (2009) e516.
dc.relation[38] J. Putnam, T. Scott, Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg. 52 (3) (1995) 225–227.
dc.relation[39] O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathe- matical & Computational Biology, Wiley, Chichester, UK, 2000.
dc.relation[40] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (4) (1990) 365–382.
dc.relation[41] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (1) (2002) 29–48.
dc.relation[42] M. Martcheva, An introduction to mathematical epidemiology, Texts in Applied Mathematics, 61, Springer, New York, USA, 2015.
dc.relation[43] M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PloS One 7 (11) (2012) e–49085.
dc.relation[44] D. Kroese, T. Taimre, Z. Botev, Handbook of Monte Carlo Methods, Wiley Series in Probability and Statistics 706, Wiley, Hoboken NJ, USA, 2011.
dc.relation[45] A. Lawson, Statistical Methods in Spatial Epidemiology, Wiley Series in Probability and Statistics, 2 ed., Wiley, Chichester, UK, 2006.
dc.relation[46] L.S. Sepúlveda, O. Vasilieva, Optimal control approach to dengue reduction and prevention in Cali, Colombia, Math. Methods Appl. Sci. 39 (18) (2016) 5475–5496.
dc.relation[47] A. Bryson, Y. Ho, Applied Optimal Control: Optimization, Estimation and Control, Taylor & Francis, USA, 1975.
dc.relation[48] S. Lenhart, J. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, Boca Raton FL, USA, 2007.
dc.relation[49] W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, USA, 1975.
dc.relation[50] S. Roberts, J. Shipman, Two-Point Boundary Value Problems: Shooting Methods, Modern analytic and computational methods in science and mathe- matics, 31, Elsevier, New York, USA, 1972.
dc.relation[51] U. Ascher, R. Mattheij, R. Russell, Numerical solution of boundary value problems for ordinary differential equations, Prentice Hall Series in Computa- tional Mathematics, Prentice Hall Inc., Englewood Cliffs NJ, USA, 1988.
dc.relation[52] M. Patterson, A. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature col- location methods and sparse nonlinear programming, ACM Trans. Math. Softw. (TOMS) 41 (1) (2014) 1.
dc.relation[53] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica 46 (11) (2010) 1843–1851.
dc.relation[54] F. Méndez, M. Barreto, J. Arias, G. Rengifo, J. Muñoz, M. Burbano, B. Parra, Human and mosquito infections by dengue viruses during and after epi- demics in a dengue endemic region of Colombia, Am. J. Trop. Med. Hyg. 74 (4) (2006) 678–683.
dc.relation[55] C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg. 71 (4) (2004) 506–513.
dc.relation[56] WHO, World life expectancy: Colombia, 2014, ( http://www.worldlifeexpectancy.com/colombia-life-expectancy ).
dc.relation[57] G. Escobar-Morales (Ed.), Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeación, Alcaldia de Santiago de Cali, 2010.
dc.relation[58] A. Costero, J. Edman, G. Clark, T. Scott, Life table study of aedes aegypti (diptera: Culicidae) in puerto rico fed only human blood versus blood plus sugar, J. Med. Entomol. 35 (5) (1998) 809–813, doi: 10.1093/jmedent/35.5.809.
dc.relation[59] T. Scott, P. Amerasinghe, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol. 37 (1) (20 0 0) 89–101.
dc.relation[60] T. Scott, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, H. Zhou, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: population dynamics, J. Med. Entomol. 37 (1) (20 0 0) 77–88.
dc.relation[61] M. Derouich, A. Boutayeb, E. Twizell, A model of dengue fever, BioMed. Eng. OnLine 2 (1) (2003) 4.
dc.relation[62] J. Suaya, D. Shepard, J. Siqueira, C. Martelli, L. Lum, L. Tan, S. Kongsin, S. Jiamton, F. Garrido, R. Montoya, B. Armien, R. Huy, L. Castillo, M. Caram, B. Sah, R. Sughayyar, K. Tyo, S. Halstead, Cost of dengue cases in eight countries in the Americas and Asia: a prospective study, Am. J. Trop. Med. Hyg. 80 (5) (2009) 846–855.
dc.relation[63] H. Nishiura, Duration of short-lived cross-protective immunity against a clinical attack of dengue: A preliminary estimate, Dengue Bull. 32 (2008) 55–66.
dc.relation[64] G. Snow, B. Haaland, E. Ooi, D. Gubler, Research on dengue during World War II revisited, Am. J. Trop. Med. Hygiene 91 (6) (2014) 1203–1217.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Elsevier, 2020
dc.titleWolbachia-based biocontrol for dengue reduction using dynamic optimization approach
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución