dc.creatorJaramillo Suárez, Héctor Enrique
dc.creatorGarcía Álvarez, José Jaime
dc.date.accessioned2019-10-16T13:32:04Z
dc.date.accessioned2022-09-22T18:43:05Z
dc.date.available2019-10-16T13:32:04Z
dc.date.available2022-09-22T18:43:05Z
dc.date.created2019-10-16T13:32:04Z
dc.date.issued2017
dc.identifierJaramillo, H. E., & Garcia, J. J. (2017). Elastic constants influence on the L4-L5-S1 annuli fibrosus behavior, a probabilistic finite element analysis. Acta of bioengineering and biomechanics, 19(4)
dc.identifier1509409X
dc.identifierhttp://hdl.handle.net/10614/11216
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3457184
dc.description.abstractA probabilistic finite element (FE) analysis of the L4-L5 and L5-S1 human annulus fibrosus (AF) was conducted to obtain a better understanding of the biomechanics of the AF and to quantify its influence on the range of motion (ROM) of the L4-L5 and L5-S1 segments. Methods: The FE models were composed of the AF and the upper and lower endplates. The AF was represented as a continuous material composed of a hyperelastic isotropic Yeoh matrix reinforced with two families of fibers described with an exponential energy function. The caudal endplate was fully restricted and 8 Nm pure moment was applied to the cranial endplate in flexion, extension, lateral flexion and axial rotation. The mechanical constants were determined randomly based on a normal distribution and average values reported. Results: Results of the 576 models show that the ROM was more sensitive to the initial stiffness of the fibers rather than to the stiffening coefficient represented in the exponential function. The ROM was more sensitive to the input variables in extension, flexion, axial rotation and lateral bending. The analysis showed an increased probability for the L5-S1 ROM to be higher in flexion, extension and axial rotation, and smaller in lateral flexion, with respect to the L4-L5 ROM. Conclusions: An equation was proposed to obtain the ROM as a function of the elastic constants of the fibers and it may be used to facilitate the calibration process of the human spine segments and to understand the influence of each elastic constant on the ROM
dc.languageeng
dc.publisherWroclaw University of Science and Technology.
dc.relation12
dc.relation4
dc.relation3
dc.relation19
dc.relationActa of Bioengineering and Biomechanics
dc.relation[1] AYTURK U.M., GARCIA J.J., PUTTLITZ C.M., The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine, J. Biomech Eng., 2010, 132, 061007–061007.
dc.relation[2] CEGOÑINO J., MORAMARCO V., CALVO-ECHENIQUE A., PAPPALETTERE C., PÉREZ DEL PALOMAR A., A Constitutive Model for the Annulus of Human Intervertebral Disc: Implications for Developing a Degeneration Model and Its Influence on Lumbar Spine Functioning, J. of Appl. Mathematics, 2014, e658719.
dc.relation[3] CORTES D.H., ELLIOTT D.M., Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression, Biomech. Model Mechanobiol., 2012, 11, 781–790.
dc.relation[4] CORTES D.H., HAN W.M., SMITH L.J., ELLIOTT D.M., Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent, J. of Orthop. Res., 2013, 1725–1732.
dc.relation[5] DIAZ C.A., GARCÍA J.J. PUTTLITZ C., Influence of vertebra stiffness in the finite element analysis of the intervertebral disc, ASME, Fajarado, Puerto Rico, USA, 2012, 2.
dc.relation[6] DREISCHARF M., ZANDER T., SHIRAZI-ADL A., PUTTLITZ C.M., ADAM C.J., CHEN C.S., GOEL V.K., KIAPOUR A., KIM Y.H., LABUS K.M., LITTLE J.P., PARK W.M., WANG Y.H., WILKE H.J., ROHLMANN A., SCHMIDT H., Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together, J. of Biomech., 2014, 47, 1757–1766.
dc.relation[7] FAGAN M.J., JULIAN S., SIDDALL D.J., MOHSEN A.M., Patient--specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc – a material sensitivity study, Proceedings of the Institution of Mechanical Engineers, Part H: J. of Engineering in Medicine, 2002, 216, 299–314.
dc.relation[8] FUJITA Y., DUNCAN N.A., LOTZ J.C., Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent, J. of Orthop. Res., 1997, 15, 814–819.
dc.relation[9] GREEN T.P., ADAMS M.A., DOLAN P., Tensile properties of the annulus fibrosus, Eur. Spine J., 1993, 2, 209–214.
dc.relation[10] GUAN Y., YOGANANDAN N., ZHANG J., PINTAR F.A., CUSICK J.F., WOLFLA C.E., MAIMAN D.J., Validation of a clinical finite element model of the human lumbosacral spine, Med. Bio. Eng. Comput., 2006, 44, 633–641.
dc.relation[11] GUO L.-X., Finite Element Model of Spine Lumbosacral Joint and its Validation, Chinese J. of Biom. Eng., 2006, 25, 426–429.
dc.relation[12] JARAMILLO H.E., GARCÍA J.J., GÓMEZ L., A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta Bioeng. Biomech., 2015, 17.
dc.relation[13] JARAMILLO H.E., PUTTLITZ C.M., MCGILVRAY K., GARCÍA J.J., Characterization of the L4-L5-S1 motion segment using the stepwise reduction method, J. Biomech., 2016, 49, 1248–1254.
dc.relation[14] LAZ P.J., BROWNE M., A review of probabilistic analysis in orthopaedic biomechanics, Proceedings of the Institution of Mechanical Engineers, Part H: J. of Eng. in Medicine, 2010, 224, 927–943.
dc.relation[15] MADSEN H.O., KRENK S., LIND N.C., Methods of Estructural Safety, Dover Publications Inc., United States of America, 1986.
dc.relation[16] MALANDRINO A., PLANELL J.A., LACROIX D., Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation, J. of Biomech., 2009, 42, 2780–2788.
dc.relation[17] MORAMARCO V., PÉREZ DEL PALOMAR A., PAPPALETTERE C., DOBLARÉ M., An accurate validation of a computational model of a human lumbosacral segment, J. of Biomech., 2010, 43, 334–342.
dc.relation[18] NIEMEYER F., WILKE H.-J., SCHMIDT H., Geometry strongly influences the response of numerical models of the lumbar spine – A probabilistic finite element analysis, J. of Biomech., 2012, 45, 1414–1423.
dc.relation[19] O’CONNELL G.D., GUERIN H.L., ELLIOTT D.M., Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration, J. Biomech. Eng., 2009, 131, 111007.
dc.relation[20] PRENDERGAST P., Finite element models in tissue mechanics and orthopaedic implant design, Clinical Biomechanics, 1997, 12, 343–366.
dc.relation[21] RAO A.A., DUMAS G.A., Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study, J. of Biomed. Eng., 1991, 13, 139–151.
dc.relation[22] ROHLMANN A., MANN A., ZANDER T., BERGMANN G., Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study, Eur. Spine J., 2009, 18, 89–97.
dc.relation[23] SCHMIDT H., HEUER F., SIMON U., KETTLER A., ROHLMANN A., CLAES L., WILKE H.-J., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clin. Biomech., 2006, 21, 337–344.
dc.relation[24] SHIN D.S., LEE K., KIM D., Biomechanical study of lumbar spine with dynamic stabilization device using finite element method, Computer-Aided Design., 2007, 39, 559–567.
dc.relation[25] SPILKER R.L., Mechanical behavior of a simple model of an intervertebral disk under compressive loading, J. of Biomech., 1980, 13, 895–901.
dc.relation[26] SPILKER R.L., DAUGIRDA D.M., SCHULTZ A.B., Mechanical response of a simple finite element model of the intervertebral disc under complex loading, J. of Biomech., 1984, 17, 103–112.
dc.relation[27] SPILKER R.L., JAKOBS D.M., SCHULTZ A.B., Material constants for a finite element model of the intervertebral disk with a fiber composite annulus, J. of Biomech. Eng., 1986, 108, 1–11.
dc.relation[28] THACKER B., NICOLELLA D., Probabilistic Finite Element Analysis of the Human Lower Cervical Spine, Abaqus., 2013, 1, 1–12.
dc.relation[29] THACKER B., WU Y.-T., NICOLELLA D., ANDERSON R., THACKER B., NICOLELLA D., ANDERSON R., Probabilistic injury analysis of the cervical spine, American Institute of Aeronautics and Astronautics, 1997.
dc.relation[30] ŁODYGOWSKI T., KĄKOL W., WIERSZYCKI M., Three-dimensional nonlinear finite element model of lumbar intervertebral disc, Acta Bioeng. Biomech., 2005, 7, 29–37.
dc.relation[31] YOGANANDAN N., MYKLEBUST J.B., RAY G., PINTAR F., SANCES A. Jr., A non-linear finite element model of a spinal segment, Mathematical Modelling, 1987, 8, 617–622.
dc.relation[32] ŻAK M., PEZOWICZ C., Spinal sections and regional variations in the mechanical properties of the annulus fibrosus subjected to tensile loading, Acta Bioeng. Biomech., 2013, 15, 51–59.
dc.relation[33] ZHU D., GU G., WU W., GONG H., ZHU W., JIANG T., CAO Z., Micro-structure and mechanical properties of annulus fibrous of the L4-5 and L5-S1 intervertebral discs, Clinical Biomech., 2008, 23, Suppl. 1, S74–S82.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleElastic constants influence on the L4-L5-S1 annuli fibrosus behavior, a probabilistic finite element analysis
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución