dc.creatorMoreno-Chuquen, Ricardo
dc.creatorCantillo Luna, Sergio Alejandro
dc.date.accessioned2021-09-29T19:49:09Z
dc.date.accessioned2022-09-22T18:41:12Z
dc.date.available2021-09-29T19:49:09Z
dc.date.available2022-09-22T18:41:12Z
dc.date.created2021-09-29T19:49:09Z
dc.date.issued2020-11
dc.identifier18276660
dc.identifierhttps://hdl.handle.net/10614/13288
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3456572
dc.description.abstractThe optimal power flow is an important tool for power system planning and power system operation. The optimal power flow is used in a 24-hour period to find an economic dispatch of generating units considering network restrictions. The optimal power flow provides valuable information about the operation cost, transmission flows, generation and congestion in the system. This information is used by generators, planners, operators and regulators to analyze and take decisions about the system at short and long term. At short term corresponds to information for the operation. At long term corresponds to information for the planning. This paper proposes a detailed optimal power flow formulation looking for a minimum cost of generation considering wind generation. Five solvers were used in order to compare differences between them. The solvers used are CBC, CLP, CPLEX, Gurobi and GLPK. These solvers are commonly used to solve the multiperiod DC optimal power flow. An IEEE-24 test system is used to compare the solutions provided by the solvers. The findings reveal significant differences between the solvers when they are used to solve the IEEE-24 test system. Additionally, the computing time for each solver is reported. The solvers CPLEX y Gurobi exhibits the lower computational time to find a solution
dc.languageeng
dc.publisherPraise Worthy Prize
dc.relationVolumen 15, número 6 (2020)
dc.relation492
dc.relationNúmero 6
dc.relation484
dc.relationVolumen 15
dc.relationMoreno Chuquen, R., Cantillo Luna, S. (2020). Assessment of a multiperiod optimal power flow for power system operation. International Review of Electrical Engineering. (Vol. 15 (6), pp. 484-492. DOI: https://doi.org/10.15866/iree.v15i6.18304
dc.relationInternational Review of Electrical Engineering
dc.relation[1] Al Hasibi, R., Hadi, S., Sarjiya, S., Multi-Objective Optimization of Integrated Power System Expansion Planning with Renewable Energy-Based Distributed Generation, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 19-31. doi: https://doi.org/10.15866/iree.v14i1.16082
dc.relation[2] Sangwato, S., Oonsivilai, A., Optimal Power Flow with Interline Power Flow Controller Using Hybrid Genetic Algorithm, (2015) International Review of Electrical Engineering (IREE), 10 (6), pp. 727-733. doi: https://doi.org/10.15866/iree.v10i6.7568
dc.relation[3] Lakdja, F., Abdeslam, D., Gherbi, F., Optimal Location of Thyristor-Controlled Series Compensator for Optimal Power Flows, (2013) International Review on Modelling and Simulations (IREMOS), 6 (2), pp. 465-472.
dc.relation[4] R.A. Jabr. Adjustable robust OPF with renewable energy sources. IEEE Trans Power Syst, vol. 28 n. 4, 2013, pp 4742–4751.
dc.relation[5] A. Castillo, X. Jiang, D.F. Gayme. Lossy DCOPF for optimizing congested grids with renewable energy and storage. Proceedings of the American Control Conference. Institute of Electrical and Electronics Engineers Inc. June 4-6, 2014, Portland, OR, United States.
dc.relation[6] T. Geetha, V. Jayashankar. Generation dispatch with storage and renewables under availability-based tariff. IEEE Region 10 Annual International Conference TENCON. 2008.
dc.relation[7] Gourma, A., Berdai, A., Reddak, M., Tytiuk, V., Reliability and Optimization Strategy in an Interconnected Network at a Wind Farm, (2018) International Review on Modelling and Simulations (IREMOS), 11 (2), pp. 76-83. doi: https://doi.org/10.15866/iremos.v11i2.13596
dc.relation[8] Varanasi, J., Tripathi, M., Performance Comparison of Generalized Regression Network, Radial Basis Function Network and Support Vector Regression for Wind Power Forecasting, (2019) International Review on Modelling and Simulations (IREMOS), 12 (1), pp. 16-23. doi: https://doi.org/10.15866/iremos.v12i1.15781
dc.relation[9] Srivastava, A., Bajpai, R., An Efficient Maximum Power Extraction Algorithm for Wind Energy Conversion System Using Model Predictive Control, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 93-107. doi: https://doi.org/10.15866/irecon.v7i3.17403
dc.relation[10] A. Castillo, D. F. Gayme. Evaluating the effects of real power losses in optimal power flow-based storage integration. IEEE Transactions on Control of Network Systems, vol 5, n. 3. Sep 2018, pp 1132–1145.
dc.relation[11] Sharifzadeh H, Amjady N, Zareipour H. Multi-period stochastic security-constrained OPF considering the uncertainty sources of wind power, load demand and equipment unavailability. Electric Power Systems Research, vol. 146, n. 5. May 2017, pp. 33–42.
dc.relation[12] Boonchuay, K. Tomsovic, F. Li, W. Ongsakul. Robust optimization-based DC optimal power flow for managing wind generation uncertainty. AIP Conference Procedings, vol 1499, n. 1. May 2014, pp 31–35.
dc.relation[13] Rahmat Azami MSJ and GH. Economic load Dispatch and DCOptimal Power Flow Problem-PSO versus LR. International Journal of Multidisciplinary Sciences and Engineering, vol. 2, n. 9. Dec 2011, pp 8–13.
dc.relation[14] A. Soroudi. Power System Optimization Modeling in GAMS. (Springer International Publishing, 2017).
dc.relation[15] R. A. Jabr, S. Karaki, J. A. Korbane. Robust Multi-Period OPF with Storage and Renewables. IEEE Transactions on Power Systems, vol. 30 n. 5. Sep 2015, pp. 2790–2799.
dc.relation[16] B. Eldridge, R. O’Neill, A. Castillo. An Improved Method for the DCOPF with Losses. IEEE Transactions on Power Systems vol. 33, n. 4. July 2018, pp. 3779–3788.
dc.relation[17] P. Maghouli, A. Soroudi, A. Keane. Robust computational framework for mid-term techno-economical assessment of energy storage. IET Generation, Transmission & Distribution, vol. 10 n. 3. Feb 2016, pp. 822–831.
dc.relation[18] Hafez, A., AlSadi, S., Nassar, Y., Chaotic Optimization Versus Genetic Algorithm for Optimal Tuning of Static Synchronous Series Compensator Stabilizing Controller, (2019) International Review of Electrical Engineering (IREE), 14 (3), pp. 159-172. doi: https://doi.org/10.15866/iree.v14i3.16163
dc.relation[19] Mmary, E., Marungsri, B., Multiobjective Optimization of Renewable Distributed Generations in Radial Distribution Networks with Optimal Power Factor, (2018) International Review of Electrical Engineering (IREE), 13 (4), pp. 297-304. doi: https://doi.org/10.15866/iree.v13i4.15069
dc.relation[20] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162
dc.relation[21] Oloulade, A., Moukengue, A., Vianou, A., Multi-Criteria Optimization of the Functionning of a Distribution Network in Normal Operating Regime, (2018) International Review of Electrical Engineering (IREE), 13 (4), pp. 290-296. doi: https://doi.org/10.15866/iree.v13i4.14401
dc.relation[22] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520
dc.relation[23] Moreno, R. Identification of Topological Vulnerabilities for Power Systems Networks. In 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5. doi: https://doi.org/10.1109/PESGM.2018.8586143
dc.relation[24] Moreno-Chuquen, R., Obando-Ceron, J., Network Topological Notions for Power Systems Security Assessment, (2018) International Review of Electrical Engineering (IREE), 13 (3), pp. 237-245. doi: https://doi.org/10.15866/iree.v13i3.14210
dc.relation[25] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869
dc.relation[26] Omar, A., Ali, Z., Abdel Aleem, S., Abou-El-Zahab, E., Sharaf, A., A Dynamic Switched Compensation Scheme for Grid- Connected Wind Energy Systems Using Cuckoo Search Algorithm, (2019) International Journal on Energy Conversion (IRECON), 7 (2), pp. 64-74. doi: https://doi.org/10.15866/irecon.v7i2.16895
dc.relation[27] Mauledoux, M., Valencia, A., Avilés, O., Genetic Algorithm Optimization for DC Micro Grid Design, a Case of Study, (2017) International Review of Electrical Engineering (IREE), 12 (4), pp. 318-323. doi: https://doi.org/10.15866/iree.v12i4.11544
dc.relation[28] Jabri, M., Aloui, H., Genetic Lagrangian Relaxation Selection Method for the Solution of Unit Commitment Problem, (2019) International Journal on Engineering Applications (IREA), 7 (2), pp. 59-64. doi: https://doi.org/10.15866/irea.v7i2.17022
dc.relation[29] Prodromidis, G., Tsiaras, E., Coutelieris, F., Autonomous Buildings with Electricity by Renewables, (2018) International Journal on Energy Conversion (IRECON), 6 (5), pp. 153-159. doi: https://doi.org/10.15866/irecon.v6i5.15919
dc.relation[30] Rizk-Allah, R., Abdel Mageed, H., El-Sehiemy, R., Abdel Aleem, S., El Shahat, A., A New Sine Cosine Optimization Algorithm for Solving Combined Non-Convex Economic and Emission Power Dispatch Problems, (2017) International Journal on Energy Conversion (IRECON), 5 (6), pp. 180-192. doi: https://doi.org/10.15866/irecon.v5i6.14291
dc.relation[31] Syahputra, R., Robandi, I., Ashari, M., Performance Improvement of Radial Distribution Network with Distributed Generation Integration Using Extended Particle Swarm Optimization Algorithm, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 293-304. doi: https://doi.org/10.15866/iree.v10i2.5410
dc.relation[32] Muthukumar, K., Jayalalitha, S., Ramaswamy, M., PSO Embedded Artificial Bee Colony Algorithm for Optimal Shunt Capacitor Allocation and Sizing in Radial Distribution Networks with Voltage Dependent Load Models, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 305-320. doi: https://doi.org/10.15866/iree.v10i2.5481
dc.relation[33] Moreno, R., Obando, J., Gonzalez, G., An integrated OPF dispatching model with wind power and demand response for day-ahead markets, (2019) International Journal of Electrical and Computer Engineering (IJECE), 4 (4), pp. 2794-2802. doi: http://doi.org/10.11591/ijece.v9i4.pp2794-2802
dc.relation[34] Wongdet, P., Leeton, U., Marungsri, B., Line Loss Reduction by Optimal Location of Battery Energy Storage System for the Daily Operation in Microgrid with Distributed Generations, (2018) International Journal on Energy Conversion (IRECON), 6 (3), pp. 83-89. doi: https://doi.org/10.15866/irecon.v6i3.15095
dc.relation[35] Obando, J., Gonzalez, G., Moreno, R., Quantification of operating reserves with high penetration of wind power considering extreme values, (2020) International Journal of Electrical and Computer Engineering (IJECE), 10 (2), pp. 1693-1700. doi: http://doi.org/10.11591/ijece.v10i2.pp1693-1700
dc.relation[36] J. Yi-Xiong, C. Hao-Zhong, Y. Jian-yong, Z. Li, New discrete method for particle swarm optimization and its application in transmission network expansion planning, Electric Power Systems Research, vol. 77 n. 3-4, 2007, pp. 227-233. doi. http://dx.doi.org/10.1016/j.epsr.2006.02.016
dc.relation[37] COIN-OR Branch and Cut Interface Julia package. Accessed on Aug. 4, 2019. [Online]. Available: https://github.com/JuliaOpt/Cbc.jl
dc.relation[38] COIN-OR Linear Programming Interface Julia package. Accessed on Aug. 5, 2019. [Online]. Available: https://github.com/JuliaOpt/Clp.jl
dc.relation[39] IBM ILOG CPLEX Optimization Studio V12.9.0 documentation. Accessed on Aug. 4, 2019. [Online]. Available: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/i log.odms.studio.help/Optimization_Studio/topics/COS_home.html
dc.relation[40] The GUROBI Manual. Accessed on August 5, 2019. [Online]. Available: https://www.gurobi.com/documentation/8.1/refman/index.html
dc.relation[41] Julia GNU Linear Programming Kit (GLPK) package. Accessed on August 5, 2019. [Online]. Available: https://github.com/JuliaOpt/GLPK.jl
dc.relation[42] Julia for Mathematical Optimization (JuMP) package. Accessed on Aug. 4, 2019. [Online]. Available: http://www.juliaopt.org/JuMP.jl/v0.19.0
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Praise Worthy Prize, 2020
dc.titleAssessment of a multiperiod optimal power flow for power system operation
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución