dc.contributorRevista Mexicana de Física
dc.creatorGonzález Hernández, A.
dc.creatorMorales-Cepeda, Ana Beatriz
dc.creatorCaicedo Angulo, Julio César
dc.creatorAlba de Sánchez, Nelly Cecilia
dc.date.accessioned2021-09-30T15:55:21Z
dc.date.accessioned2022-09-22T18:40:15Z
dc.date.available2021-09-30T15:55:21Z
dc.date.available2022-09-22T18:40:15Z
dc.date.created2021-09-30T15:55:21Z
dc.date.issued2020-08
dc.identifier0035001X
dc.identifierhttps://hdl.handle.net/10614/13294
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3456296
dc.description.abstractLaboratory scale studies of tribological properties of nitride coatings are useful in predicting their protective wear behavior in cutting toolsfor industrial-scale applications. The main aim of this research is to determine optical and tribo-mechanical properties in multilayer coatingsof metal-ceramic assigned as coatings A and B. These coatings were deposited by DC magnetron sputtering on carbon steel AISI 1060using buffer adhesion layers of W, Ti/W/WN and TiN/TiN respectively. For to determine molecules, interactions of materials were analyzedthrough of Raman and FTR spectroscopies. The nanohardness, tribological and adhesion behavior were studied by nanoindentation, pinon disk and a tribometer. The hardness and behavior tribological, were obtained by Nano-indentation, pin on disk, and scratch test using atribometer. FTIR and Raman analysis shown the formation of Ti metallic ion and WO3mainly in both coatings. The hardness of coatingsshown a slight improvement compared with the substrate. However, for industrial applications this property should be increase. The behaviorof COF does not present improvement. The mass loss and wear rate were high significantly due to the formation of cracks on surface coatings.Scratch analysis, it found three wear mechanics determined by the presence of irregular borders with sharp shadow, semicircle detachmentin coatings and coatings detachment in the central track as the load increased
dc.languageeng
dc.publisherRevista Mexicana de Fisica
dc.publisherMéxico
dc.relationVolumen 66, número 4 (2020)
dc.relation503
dc.relation4
dc.relation496
dc.relation66
dc.relationGonzález Hernandez, A., Morales Cepeda, A. B., Caicedo, J.C., Alba, N. C. (2020). Optical and tribo mechanical characterization in metal ceramic multilayers coatings. Revista Mexicana de Física. Vol. 66 (4), pp. 496–503. DOI: https://doi.org/10.31349/RevMexFis.66.496
dc.relationRevista Mexicana de Física
dc.relation1. M.J. Neale, M. Gee, A Guide to Wear Problems and Testing for Industry. William Andrew. Applied Science Publisher (2001) 3-31. https://doi.org/10.1016/ B978-081551471-8.50002-5
dc.relation2. J. Morales-Hernández, A. Mandujano-Ruiz, Torres-González, F.J. Espinoza-Beltr´an, H. Herrera-Hernández, Low friction coefficient coatings Ni-Cr by magnetron sputtering, DC. Rev. Metal.
dc.relation3 (2015) 1-8. http://dx.doi.org/10.3989/ revmetalm.047 3. J. E. Sundgren, Formation and characterization of titanium nitride and titanium carbide films prepared by reactive Sputtering. Dissertation Link¨oping 79 (1982) 13. https://inis. iaea.org/collection/NCLCollectionStore/ Public/13/693/13693374.pdf
dc.relation4. M. Wen, Q.N. Meng, W.X. Yu, W.T. Zheng, S.X. Mao , M.J. Hua, Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surface and Coatings Technology 205 (2010) 1953-1961. https://doi.org/10.1016/j.surfcoat.2010.08.082
dc.relation5. R.F. Londo˜no Menjura et al., Influence of deposition temperature on WTiN coatings tribological performance. Applied Surface Science 427 (2018) 1096-1104. https://doi.org/ 10.1016/j.apsusc.2017.07.215
dc.relation6. M. Albella Jose. Láminas delgadas y recubrimientos: Preparaci´on, propiedades y aplicaciones. Consejo Superior de Investigaciones Cient´ıficas. Madrid España (2003) 559-560.
dc.relation7. D.I. James, Surface damage caused by Polyvinyl Chloride Sliding on Steel. Wear 2 (1958) 183-194. https://doi.org/ 10.1016/0043-1648(59)90003-1
dc.relation8. A. González, M. Flores, J.C. Caicedo, W. Aperador and A.B. Morales-Cepeda, Síntesis y caracterización electroqu´ımica de recubrimientos de multicapas metal cer´amico de W/WN, Ti/TiN y WTiN. Rev. Mex. Fis. 64 (2018) 368-374. https: //doi.org/10.31349/RevMexFis.64.368
dc.relation9. W. Douglas Timothy, Infrared and Raman spectra of metal-oxygen complexes. Thesis doctor of philosophy of University of London, chemistry department Imperial College, south Kensington (1967) 58. https: //spiral.imperial.ac.uk/bitstream/10044/ 1/17628/2/Wickens-TD-1967-PhD-Thesis.pdf
dc.relation10. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz. Infrared and Raman study of WO3 tungsten triox-ides and WO3, xH2O tungsten trioxide hydrates. J. Solid- State Chemis. 67 (1987) 235-247. https://doi.org/10. 1016/0022-4596(87)90359-8
dc.relation11. I. Hargittai, M. Hargittai, V.P. Spiridonov and E.V. Erokhin, J. Mol. Structure 8 (1971) 31-41. https://doi.org/10. 1016/0022-2860(71)80039-X
dc.relation12. J. Díaz-Reyes, V. Dorantes-García, A. Pérez-Benítez, J.A. Balderas-Lopez, Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies y Vacío sociedad Mexicana de Ciencia y Tecnolog´ıa de superficies y materiales 21 (2008). http://www.scielo.org.mx/ pdf/sv/v21n2/v21n2a3.pdf
dc.relation13. T. Mahalingan, C. Selvakumar, E. Ranjith Kumar, T. Venkatachalam, Structural, optical, morphological and termal properties of TiO2-Al and TiO2-Al2O3 composite powders by ball melting. Phys. Lett. A, 381 (2017) 1815-1819. https:// doi.org/10.1016/j.physleta.2017.02.053
dc.relation14. W. Xue-Bin, D. Chua-Fan andW. Lai-Sheng, Vibrationally Resolved Photoelectron Spectra of TiCx- (x =2-5) Clusters. J. Phys. Chem. A 101 (1997) 7699-7701. https://doi.org/ 10.1021/jp971838k
dc.relation15. L. Addonizio Maria, C. Anna, A. Alessandro, G. Emilia and L. Laura, Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sc. Technol. A, 30 (2012) 031506-1-031506-8. https://doi.org/10. 1116/1.3698399
dc.relation16. B. Pecquenard, h. Lecacheux, j. Livage, and c. Julien, OrthorhombicWO 3 formed via a ti-stabilizedWO3 1/3h2o phase. J. Solid State Chemis. 135 (1998) 159-168. https://doi. org/10.1006/jssc.1997.7618
dc.relation17. P. Hoffman, H. Galindo, G. Zambrano, C. Rinc´on, FTIR studies of tungsten carbide in bulk material and thin film samples. Material Characterization 50 (2003) 255-259. https: //doi.org/10.1016/S1044-5803(03)00100-1
dc.relation18. M. Morsi Abou Sekkina and S. Samy Asar, Infrared absorption Spectra and hydrogen bonding of some solid aninoanthraquinones. Proc. Indian Nath. Sci. Acad. 48 (1982) 112-118. https://insa.nic.in/ UI/Journalarticle.aspx?jid=NA==&&VID= Mjky&&IsNm=SXNzdWUgMUEgICAg
dc.relation19. G. Davindson, Spectroscopic properties of inorganic and organometallic compounds. The Royal Society of Chemistry. First edition, 30 (1997) 349. https://doi.org/10. 1080/00945717708069725
dc.relation20. H. Barbara Stuart, J. David Ando, Biological Applications of Infrared Spectroscopy. (JohnWiley and Sons editorial, first edition 1997) 61. ISBN: 978-0-471-97414-7
dc.relation21. W.L. Scopel, M.C. Fantini, M.I. Alayo, I. Pereyra, Thin solid films 413 (2002) 59-64. https://doi.org/10.1016/ S0040-6090(02)00346-2
dc.relation22. F. Giorgis, C.F. Pirri, E. Tresso, Thin solid films 307 (1997) 298- 305. https://doi.org/10.1016/S0040-6090(97) 00272-1
dc.relation23. M.M. Ismael, The effect of silicon orientation on Thickness and chemical bonding configuration of SiOxNy thin films. International Letters of Chemistry, Physics and Astronomy, 19 (2013) 1-9. https: //www.infona.pl/resource/bwmeta1.element. baztech-7f6c119c-7831-4304-9816-b5769f4d4de9/ tab/summary
dc.relation24. B.O. Francisco, J. B.G. Gilberto, G.B.A. Maryory, Influence of the duplex coatings on the mechanical properties and wear resistance of the tempered AISI 4140 steel. Journal EIA Volume 19 (2013) 151-160. http: //www.scielo.org.co/scielo.php?script= sci arttextn&pid=S1794-12372013000100014
dc.relation25. P.G. Spizzirri, J.H. Fang, E. Gauja and S. Prawer, Nano-Raman spectroscopy of silicon surfaces. Research Gate Article in materials Forum (2010). https://arxiv.org/ftp/arxiv/ papers/1002/1002.2692.pdf
dc.relation26. M. Filipescu, V. Ion, D. Colceag, P. M. Ossi , M. Dinescu, Growth and characterizations of nanostructured tungsten oxides. Romanian Reports in Physics Supplement 64 (2012) 1213-1225. https://core.ac.uk/download/ pdf/74312823.pdf
dc.relation27. W. Bhalchandra Anil, Synthesis of porous monoclinic tungsten oxides and their applications in sensor. Thesis Doctoral Philosophy in chemistry, University of Maine (2003). https://pdfs.semanticscholar.org/bd3e/ 3fad72a065e04d13e5934ab20bd7bb639dd7.pdf
dc.relation28. K. Srinivasarao and P.K. Mukhopadha, IR and Raman Studies on r.f. magnetron sputtered nano crystalline WO3 thin films. Int. J. App. Eng. Res. 16 (2015) 36148-36156. ISSN 0973-4562 https://www.researchgate.net/ publication/283108627 IR and Raman studies on rf magnetron sputtered nano crystalline WO3 thin films
dc.relation29. G.S. Kim, S.Y. Lee and J.H. Hahn, Surf. Coat. Technol. 171 (2003) 91. https://doi.org/10.1016/ S0257-8972(03)00244-5
dc.relation30. W.C. Oliver and G. Pharr, An improved Technique for determining hardness and elastic modulus using load displacement sensing indentation experiments. J. Mater Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
dc.relation31. V. Hajek, K. Rusnak, J. Vicek, L. Martinu and H.M. Hawthone, Wear 213 (1997) 80. https://doi.org/10. 1016/S0043-1648(97)00176-2
dc.relation32. S. Petrovi´c et al., Picosecond Laser Ablation of Nano-Sized WTi thin film. Laser Physiscs 19 (2009) 1844-1849. https: //doi.org/10.1134/S1054660X09150
dc.relation33. T. Polcar, A. Cavaleiro, Structure, mechanical properties and tribology of W-N and W-O coatings. Int. Journal of Refractory Metals and Hard Materials 28 (2010) 15-22. https: //doi.org/10.1016/j.ijrmhm.2009.07.013
dc.relation34. C.C. Vi´atara, M.I Castro, J.M. V´elez, A. Toro, Unlubricated sliding wear of pearlitic and bainitic steels. Wear 259 (2005) 405-411. https://doi.org/10.1016/j. wear.2005.02.013
dc.relation35. T. Polcar, N.M.G. Parreira, A. Cavaleiro, Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear 265 (2008) 319-326. https:// doi.org/10.1016/j.wear.2007.10.011
dc.relation36. A. García, ´a. Varela, J.L. Miel, C. Camba, F. Barbadillo, Estudio tribol´ogico de aceros austen´ıticos tipo Hadfield: influencia del manganeso en su respuesta frente al desgaste. Revista de metalurgia, 46 (2010) 47- 52. http://revistademetalurgia.revistas.csic. es/index.php/revistademetalurgia/article/ view/1158
dc.relation37. K. Sipos, M. López, and, M. Trucco. Surface martensite White layer produced by adhesive sliding wearfriction in AISI 1065 steel. Rev. Lat. Mat. 28 (2008) 46- 50. http://ve.scielo.org/scielo.php?script= sci arttextn&pid=S0255-69522008000100006
dc.relation38. G. Frade Rub´en, Pr´acticas de elementos amovibles y fijos no estructurales (2014). https://fradeblogs.wordpress. com/2014/02/01/los-aceros/
dc.relation39. M.F. Cano Ordóñez, J.S. Restrepo Paruma, F. Sequeda Osorio, The effect of counterpart material on the sliding wear of TiAlN coatings deposited by reactive cathodic pulverization. SCI. CUM IND. 3 (2015) 59-66. http://dx.doi.org/ 10.18226/23185279.v3iss2p59
dc.relation40. N.L PartChasarathi, U. Borah, SH. K. Albert, Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316 (N) Stainless Steel elevated Temperatures. Computer Modelling and new Technologies 17 (2013) 51- 63. https://www.semanticscholar.org/paper/ CORRELATION-BETWEEN-COEFFICIENT-OF-FRICTI ON-AND-IN-Parthasarathi-Borah/ d5bd514436b05fb9b8af5ab57476cba71a7470d6
dc.relation41. B. Ivkovi´c, M. Djukdjanovi´c, D. Stamenkovi´c, The influence of the contact surface roughness on the static friction coefficient. Tribology in industry, 22 (2000) 41- 44. http://www. tribology.rs/journals/2000/2000-3-4.html
dc.relation42. S.R. Chauhan, K. Dass, Dry sliding wear behaviour of Titanium (grade 5) alloy by using response surface methodology. Advances in Tribology e 2 (2013) 1-9. https://doi.org/ 10.1155/2013/272106
dc.relation43. ASTM GG99-05. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. Copyright °c ASTM International, 100 Barr Harbor Drive, PO Box C700,West Conshohocken, PA 19428-2959. United States (2010). https://www.astm. org/DATABASE.CART/HISTORICAL/G99-05.htm
dc.relation44. C. Fischer-Cripps Antony, Introduction to contact mechanics. In chapter 6: Elastic contact, 6.1 Hertz contact equations Second edition, Springer Science, printed in United Sates of America (2007) 101-108. ISBN 978-0-387-68187-0
dc.relation45. A.G. Mamalis, A.S. Branis, D.E. Manolakos. Modelling of precision hard cutting using implicit finite element methods. Journal of Materials Processing Technology 123 (2002) 464- 475. https://doi.org/10.1016/S0924-0136(02) 00133-4
dc.relation46. Hertzian contact stress calculator. Hertzian contact stress calculator online. https://amesweb.info/ HertzianContact/HertzianContact.aspx (consulted 4 April 2020).
dc.relation47. ASTM C1624, M´etodo de prueba est´andar para resistencia a la adhesi´on y los modos de fallo mec´anico de los recubrimientos cer´amicos por cuantitativa de punto ´unico del rasgu˜no de pruebas ASTM International, West Conshohocken, PA, (2015). https://www.astm.org/Standards/C1624.htm
dc.relation48. ASTM 171, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus. West Conshohocken, PA United States (2003). https://www.astm. org/DATABASE.CART/HISTORICAL/G171-03.htm
dc.relation49. A. Mubarak, E. Hamzah, Influence of nitrogen gas flow rate on the microstructural and mechanical properties of TiN deposited carbon steel synthesized by CAE PVD Technique. AJSTD 23 (2006) 239-251. https://doi.org/10. 29037/ajstd.111
dc.relation50. J.C. Caicedo, W. Aperador and Y. Aguilar, Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel. Rev. Mex. Fis. 59 (2013) 364-370 http://www.scielo.org.mx/scielo. php?pid=S0035-001X2013000400012n&script= sci arttextn&tlng=pt Rev. Mex.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Revista Mexicana de Física, 2020
dc.titleOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución