dc.contributor | IntechOpen | |
dc.creator | Hidalgo Salazar, Miguel Angel | |
dc.creator | Correa Aguirre, Juan Pablo | |
dc.creator | Montalvo Navarrete, Juan Manuel | |
dc.creator | López Rodríguez, Diego Fernando | |
dc.creator | Rojas González, Andrés Felipe | |
dc.date.accessioned | 2021-12-02T18:54:30Z | |
dc.date.accessioned | 2022-09-22T18:38:03Z | |
dc.date.available | 2021-12-02T18:54:30Z | |
dc.date.available | 2022-09-22T18:38:03Z | |
dc.date.created | 2021-12-02T18:54:30Z | |
dc.date.issued | 2019 | |
dc.identifier | 9781838806149 | |
dc.identifier | https://hdl.handle.net/10614/13511 | |
dc.identifier | DOI: http://dx.doi.org/10.5772/intechopen.81635 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3455586 | |
dc.description.abstract | In this work, biocomposites based on recycled polypropylene (r-PP) and two different natural fibers (coffee husk-CHF and coconut coir-CCF fibers) were prepared using extrusion and injection molding processes. Also, the addition of maleated polypropylene (MAPP) as a coupling agent on the biocomposites was explored. Recycled polypropylene and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior and the morphology of these materials have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electronic microscopy (SEM). The experimental results showed that the addition of CHF and CCF to the r-PP resulted in an increase in the flexural modulus and thermal properties of the composites but resulted in poor impact properties. Thermal characterization showed that CHF possesses a better thermal stability compared to CCF. However, both fibers act as nucleating agents and generate an increase in the thermal stability of the r-PP phase. Finally, it was observed that addition of 4% of MAPP significantly improved the mechanical strength and impact behavior of the biocomposites. Regarding environmental issues, a cradle to gate life cycle assessment was made in order to define the carbon footprint of the materials. | |
dc.language | eng | |
dc.publisher | IntechOpen | |
dc.relation | 26 | |
dc.relation | 1 | |
dc.relation | Hidalgo Salazar, M.Á., Correa Aguirre, J.P., Montalvo Navarrete, J.M., López Rodríguez, D.F., Rojas González, A.F. (2019). Recycled polypropylene coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. En Evingür, G. A., & Pekcan, Ö.,& Achilias, D. S., (Eds.).Thermosoftening Plastics. IntechOpen, ( pp. 1-26). DOI: 10.5772/intechopen.81635 | |
dc.relation | Thermosoftening Plastics | |
dc.relation | [1] Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, et al. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 2017;7(1):72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28353158 | |
dc.relation | [2] Leão RM, da Luz SM, Araújo JA, Christoforo AL, Leão RM, da Luz SM,et al. The recycling of sugarcane fiber/polypropylene composites. Materials Research. 2015;18(4):690-697. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000400690&lng=en&tlng=en | |
dc.relation | [3] Sarasini F, Tirillò J, Zuorro A, MaffeiG, Lavecchia R, Puglia D, et al. Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products. 2018;118:311-320. Available from: .sciencedirect.com/science/article/pii/S0926669018303005 | |
dc.relation | [4] Abba HA, Nur IZ, Salit SM. Review of agro waste plastic composites production. Journal of Minerals and Materials Characterization and Engineering. 2013;1(05):271-279. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmmce.2013.15041 | |
dc.relation | [5] Berto D, Rampazzo F, Gion C, Noventa S, Ronchi F, Traldi U, et al. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere. 2017;176:47-56. Available from: ] Ambientales UI de SC de E eI, Energética U de PMi, Instituto de Hidrología M y EAI. Atlas del potencial energético de la biomasa residual en Colombia. 2011; Available from: https://bdigital.upme.gov.co/handle/001/1058 | |
dc.relation | [7] Ebrahimi M, Caparanga AR, Ordono EE, Villaflores OB. Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renewable Energy. 2017;
109:41-48. Available from: https://www.sciencedirect.com/science/article/pii/S0960148117301933 | |
dc.relation | [8] Lertwattanaruk P, Suntijitto A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials. 2015;94:664-669. Available
from: https://www.sciencedirect.com/science/article/pii/S0950061815301823 | |
dc.relation | [9] Conesa JA, Sánchez NE, Garrido MA, Casas JC. Semivolatile and volatile compound evolution during pyrolysis
and combustion of Colombian coffee husk. Energy & Fuels. 2016;30(10): 7827-7833. Available from: http://pubs.acs.org/doi/10.1021/acs.energyfuels.6b00791 | |
dc.relation | [10] de Carvalho Oliveira F, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, et al. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology. 2018;257:172-180. Available from: https://www.sciencedirect.com/science/article/pii/S0960852418300488?via%3Dihub | |
dc.relation | [11] Manals-Cutiño EM, Salas-Tort D, Penedo-Medina M. Tecnología Química. Vol. 38. Tecnología Química. [Publisher not identified]; 2018. pp. 169-181. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852018000100013 | |
dc.relation | [12] ACOPLASTICOS. Plastics in Colombia [Internet]. 2018. Available from: http://www.acoplasticos.org/
index.php/mnu-nos/mnu-pyr/pec | |
dc.relation | [13] CEMPRE-Colombia. National Study of Recycling and Recyclers: Approach to the Market of Recyclers and Experiences [Internet]. 2011. Available from: https://cempre.org.co/documentos/ | |
dc.relation | [14] Alvarado K, Blanco A, Taquechel A. Fibra de coco: Una alternativa ecológica como sustrato agrícola. [Internet]. 2008; 3:30-31. Available from: http://www.actaf.co.cu/revistas/revista_ao_95-2010/Rev2008-3/ | |
dc.relation | [15] Jaramillo Henao G, Zapata Márquez LM. Aprovechamiento de los residuos sólidos orgánicos en Colombia. instname Univ Antioquia [Internet]. 2008; Available from: http://bibliotecadigital.udea.edu.co/dspace/handle/10495/45 | |
dc.relation | [16] Joseph K, Thomas S, Pavithran C.
Effect of chemical treatment on the tensile properties of short sisal fibrereinforced polyethylene composites. Polymer (Guildf). 1996;37(23): 5139-5149. Available from: https://www.sciencedirect.com/science/article/pii/0032386196001449 | |
dc.relation | [17] Lin B-J, Chen W-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research. 2015 | |
dc.relation | [18] Coutinho FMB, Costa THS, Carvalho DL. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 1997;65(6):1227-1235. Available from: http://doi.wiley.com/10.1002/%28SICI%291097-4628%2819970808%2965%3A6%3C1227%3A%3AAIDAPP18%3E3.0.CO%3B2-Q | |
dc.relation | [19] La Mantia FP, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesión promoters. Composite Interfaces. 2007; 14(7–9):685-698. Available from: https://www.tandfonline.com/doi/full/10.1163/156855407782106500 | |
dc.relation | [20] Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. Acetylated plant-fiberreinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer – Plastics Technology and Engineering. 2000; 39(4):757-781. Available from: http://www.tandfonline.com/doi/abs/10.1081/PPT-100100057 | |
dc.relation | [21] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven
industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results in Physics. 2018;8: 461-467. Available from: https://www.sciencedirect.com/science/article/pii/S2211379717322829 | |
dc.relation | [22] La Mantia FP, Morreale M. Green composites: A brief review. Composites. Part A, Applied Science and Manufacturing. 2011;42(6):579-588. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X11000406 | |
dc.relation | [23] AL-Oqla FM, Salit MS. Materials Selection for Natural Fiber Composites. London: Woodhead Publishing; 2017. 278 p | |
dc.relation | [24] Ashik KP, Sharma RS. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering. 2015; 3(05):420-426. Available from: http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jmmce.2015.35044 | |
dc.relation | [25] Väisänen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production. 2017; 149:582-596. Available from: https://www.sciencedirect.com/science/article/pii/S095965261730358X | |
dc.relation | [26] Cheung WM, Leong JT, Vichare P. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. Journal of Cleaner Production. 2017;167:759-775. Available from: https://www.sciencedirect.com/science/article/pii/S0959652617319492 | |
dc.relation | [27] Pang M-M, Pun M-Y, Chow W-S, Ishak ZAM. Carbon footprint calculation for thermoformed starchfilled polypropylene biobased materials. Journal of Cleaner Production. 2014;64: 602-608. Available from: https://www.sciencedirect.com/science/article/pii/S0959652613004873 | |
dc.relation | [28] Korol J, Burchart-Korol D, Pichlak M. Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. Journal of Cleaner Production. 2016;113:144-152. Available
from: https://www.sciencedirect.com/science/article/pii/S0959652615018338 | |
dc.relation | [29] Reinders MJ, Onwezen MC, Meeusen MJG. Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands. Journal of Cleaner Production. 2017;162:1169-1179. Available from: https://www.sciencedirect.com/science/article/pii/S0959652617312969 | |
dc.relation | [30] Wall-Markowski CA, Kicherer A, Saling P. Using eco-efficiency analysis to assess renewable-resource-based technologies. Environmental Progress. 2004;23(4):329-333. Available from: http://doi.wiley.com/10.1002/ep.10051 | |
dc.relation | [31] Rojas González AF, Ruales Salcedo ÁV. Características energéticas de combustibles densificados de residuos de la uva isabella (Viti labrusca L.). Rev Mutis. 2016;5(2):5-15. Available from: https://revistas.utadeo.edu.co/index.php/mutis/article/view/1069 | |
dc.relation | [32] Rowell RM, Young RA, Rowell JK. Paper and Composites from Agro-Based Resources. New York: CRC/Lewis Publishers; 1997. 446 p | |
dc.relation | [33] Sluiter A, Hames B, Ruiz CS, Sluiter J, Templeton D, DC. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: April 2008; Revision Date: July 2011 (Version 07-08-2011) - 42618.pdf. Tech Rep
NREL/TP -510-42618. 2008;(January): 1-15. Available from: https://searchworks.stanford.edu/view/7616741 | |
dc.relation | [34] Wang Y, Fu Q, Li Q, Zhang G, Shen K, Wang Y-Z. Ductile-brittle-transition phenomenon in polypropylene/ethylenepropylene-diene rubber blends
obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. Journal of Polymer Science Part B: Polymer Physics. 2002;40(18):2086-2097. Available from: http://doi.wiley.com/10.1002/polb.10260 | |
dc.relation | [35] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913-933. Available from:
https://www.sciencedirect.com/science/article/pii/S0016236109004967 | |
dc.relation | [36] de Oliveira JL, da Silva JN, Graciosa Pereira E, Oliveira Filho D, Rizzo CD. Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification. Renewable and Sustainable Energy Reviews. 2013;21: 52-58. Available from: https://www.sciencedirect.com/science/article/pii/S1364032112007289 | |
dc.relation | [37] Ismail TM, Abd El-Salam M, Monteiro E, Rouboa A. Eulerian – Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Applied Thermal Engineering. 2016; 106:1391-1402. Available from: https://www.sciencedirect.com/science/article/pii/S135943111631016X | |
dc.relation | [38] Mythili R, Venkatachalam P, Subramanian P, Uma D. Characterization of bioresidues for biooil production through pyrolysis. Bioresource Technology. 2013;138:71-78. Available from: https://www.sciencedirect.com/science/article/pii/S0960852413005543 | |
dc.relation | [39] Hietala M, Oksman K. Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion. Composites. Part A, Applied Science and Manufacturing. 2018;109: 538-545. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X18301453 | |
dc.relation | [40] Castellani R, Di Giuseppe E, Beaugrand J, Dobosz S, Berzin F, Vergnes B, et al. Lignocellulosic fiber
breakage in a molten polymer. Part 1. Qualitative analysis using rheo-optical observations. Composites. Part A, Applied Science and Manufacturing. 2016;91:229-237. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X16303426 | |
dc.relation | [41] Jung S-H, Cho M-H, Kang B-S, Kim J-S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology. 2010;91(3):277-284. Available from: https://www.sciencedirect.com/science/article/pii/S037838200900321X | |
dc.relation | [42] Kunwar B, Moser BR, Chandrasekaran SR, Rajagopalan N, Sharma BK. Catalytic and termal depolymerization of low value postconsumer high density polyethylene plastic. Energy. 2016;111:884-892. Available from: https://www.sciencedirect.com/science/article/pii/S0360544216307976 | |
dc.relation | [43] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta. 2017; 658:93-100. Available from: https://www.sciencedirect.com/science/article/pii/S004060311730268X | |
dc.relation | [44] Azizi K, Keshavarz Moraveji M, Abedini NH. Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition. Bioresource Technology. 2018; 247:66-72. Available from: https://www.sciencedirect.com/science/article/pii/S0960852417316085 | |
dc.relation | [45] Uzun BB, Yaman E. Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. Journal of the Energy Institute. 2017;90(6):825-837. Available from: https://www.sciencedirect.com/science/article/pii/S1743967116301337 | |
dc.relation | [46] Galhano dos Santos R, Bordado JC, Mateus MM. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel. 2018; 221:72-77. Available from: https://www.sciencedirect.com/science/article/pii/S0016236118302515 | |
dc.relation | [47] Jeguirim M, Limousy L, Fossard E. Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy. 2016;13(6): 608-615. Available from: http://www.
tandfonline.com/doi/full/10.1080/15435075.2014.888664 | |
dc.relation | [48] Bajwa DS, Wang X, Sitz E, Loll T, Bhattacharjee S. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules. 2016;89:265-272. Available from: https://www.sciencedirect.com/science/article/pii/S0141813016303944?via%3Dihub | |
dc.relation | [49] Collazo-Bigliardi S, Ortega-Toro R, Chiralt BA. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers. 2018;191:205-215. Available from: https://www.sciencedirect.com/science/article/pii/S0144861718302789 | |
dc.relation | [50] Baêta BEL, Cordeiro PH de M, Passos F, Gurgel LVA, de Aquino SF, Fdz-Polanco F. Steam explosión pretreatment improved the biomethanization of coffee husks. Bioresource Technology. 2017;245: 66-72. Available from: https://www.sciencedirect.com/science/article/pii/S0960852417314244 | |
dc.relation | [51] Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy. 2018;129:695-716. Available from: https://www.sciencedirect.com/science/article/pii/S0960148117303427 | |
dc.relation | [52] Agustin-Salazar S, Cerruti P, Medina-Juárez LÁ, Scarinzi G, Malinconico M, Soto-Valdez H, et al. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macromolecules. 2018;115:727-736. Available from: https://www.sciencedirect.com/science/article/pii/S014181301735064X | |
dc.relation | [53] Tran D-T, Lee HR, Jung S, Park MS, Yang J-W. Lipid-extracted algal biomass based biocomposites fabrication with poly(vinyl alcohol). Algal Research. 2018;31:525-533. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416302995 | |
dc.relation | [54] Ayrilmis N, Kaymakci A, Güleç T. Potential use of decayed wood in production of wood plastic composite. Industrial Crops and Products. 2015;74: 279-284. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015300352 | |
dc.relation | [55] Migneault S, Koubaa A, Perré P, Riedl B. Effects of wood fiber Surface chemistry on strength of wood–plastic composites. Applied Surface Science. 2015;343:11-18. Available from: https://www.sciencedirect.com/science/article/pii/S0169433215005462 | |
dc.relation | [56] Arjmandi R, Ismail A, Hassan A, Abu BA. Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction
and Building Materials. 2017;152: 484-493. Available from: https://www.sciencedirect.com/science/article/pii/S0950061817313880 | |
dc.relation | [57] Huang L, Mu B, Yi X, Li S, Wang Q. Sustainable use of coffee husks for reinforcing polyethylene composites. Journal of Polymers and the Environment. 2018;26(1):48-58. Available from: http://link.springer.com/10.1007/s10924-016-0917-x | |
dc.relation | [58] Lisperguer J, Bustos X, Saravia Y, Escobar C, Venegas H. Efecto de las caracteristicas de harina de madera en las propiedades físico-mecánicas y térmicas de polipropileno reciclado. Maderas. Ciencia y tecnología. 2013;15 (ahead). Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2013005000025&lng=en&nrm=iso&tlng=en | |
dc.relation | [59] Bledzki AK, Franciszczak P, Osman Z, Elbadawi M. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products. 2015;70: 91-99. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015001880 | |
dc.relation | [60] Nunes SG, da Silva LV,Amico SC, Viana JD, Amado FDR. Study of composites produced with recovered polypropylene and piassava Fiber. Materials Research. 2016;20(1):144-150. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100144&lng=en&tlng=en | |
dc.relation | [61] Nourbakhsh A, Baghlani FF, Ashori A. Nano-SiO2 filled rice husk/polypropylene composites: Physicomechanical properties. Industrial Crops and Products. 2011;33(1):183-187. Available from: https://www.sciencedirect.com/science/article/pii/S0926669010002554 | |
dc.relation | [62] Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures. 2007;77(1):45-55. Available from: https://www.sciencedirect.com/science/article/pii/S0263822305001522 | |
dc.relation | [63] Yang H-S, Kim H-J, Son J, Park H-J, Lee B-J, Hwang T-S. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures. 2004;63(3–4): 305-312. Available from: https://www.sciencedirect.com/science/article/pii/S026382230300179X | |
dc.relation | [64] Hidalgo-Salazar MA, Munõz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. International Journal of Polymer Science. 2015:2015;12-18 | |
dc.relation | [65] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE–Al–fique composite materials. Composites. Part B, Engineering. 2013;55:345-351. Available from: https://www.sciencedirect.com/science/article/pii/S1359836813003430 | |
dc.relation | [66] Audsley E, Brander M, Chatterton JC, Murphy-Bokern D, Webster C, Williams AG. How low can we go? An assessment of greenhouse gas emissions from the UK foodsystem and the scope reduction by 2050. Report for the WWF and Food ClimateResearch Network. 2010; Available from: https://dspace.lib.cranfield.ac.uk/handle/1826/6503 | |
dc.relation | [67] Factor marginal de emisión de gases de efecto invernadero del Sistema Interconectado Nacional para proyectos aplicables al Mecanismo de Desarrollo Limpio (MDL). 2014. Available from: https://www.icbf.gov.co/cargues/avance/docs/resolucion_minminas_91304_2014.htm | |
dc.relation | [68] Guía de cálculo de emisiones de GEI. Inicio. Generalitat de Catalunya [Internet]. 2017. Available from: http://
canviclimatic.gencat.cat/es/redueix_emissions/com-calcular-emissions-degeh/guia_de_calcul_demissions_de_co2/ | |
dc.relation | [69] Turner DA, Williams ID, Kemp S. Greenhouse gas emission factors for recycling of source-segregated waste materials. Resources, Conservation and
Recycling. 2015;105:186-197. Available from: https://www.sciencedirect.com/science/article/pii/S0921344915301245 | |
dc.relation | [70] Noponen MRA, Edwards-Jones G, Haggar JP, Soto G, AttarzadehN,Healey JR. Greenhouse gas emissions in coffee
grownwith differing input levels under conventional and organic management. Agriculture, Ecosystems and Environment. 2012;151:6-15. Available from: https://www.sciencedirect.com/science/article/pii/S0167880912000345 | |
dc.relation | [71] Franklin associates. Cradle-to-Gate Life Cycle Inventory (LCI) of Nine Plastics Resins and Four Polyurethane Precursors - August 2011 [Internet]. 2011. Available from: http://www.fal.com/projects.html | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - IntechOpen, 2019 | |
dc.title | Recycled polypropylene coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies | |
dc.type | Capítulo - Parte de Libro | |