dc.contributorIntechOpen
dc.creatorHidalgo Salazar, Miguel Angel
dc.creatorCorrea Aguirre, Juan Pablo
dc.creatorMontalvo Navarrete, Juan Manuel
dc.creatorLópez Rodríguez, Diego Fernando
dc.creatorRojas González, Andrés Felipe
dc.date.accessioned2021-12-02T18:54:30Z
dc.date.accessioned2022-09-22T18:38:03Z
dc.date.available2021-12-02T18:54:30Z
dc.date.available2022-09-22T18:38:03Z
dc.date.created2021-12-02T18:54:30Z
dc.date.issued2019
dc.identifier9781838806149
dc.identifierhttps://hdl.handle.net/10614/13511
dc.identifierDOI: http://dx.doi.org/10.5772/intechopen.81635
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3455586
dc.description.abstractIn this work, biocomposites based on recycled polypropylene (r-PP) and two different natural fibers (coffee husk-CHF and coconut coir-CCF fibers) were prepared using extrusion and injection molding processes. Also, the addition of maleated polypropylene (MAPP) as a coupling agent on the biocomposites was explored. Recycled polypropylene and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior and the morphology of these materials have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electronic microscopy (SEM). The experimental results showed that the addition of CHF and CCF to the r-PP resulted in an increase in the flexural modulus and thermal properties of the composites but resulted in poor impact properties. Thermal characterization showed that CHF possesses a better thermal stability compared to CCF. However, both fibers act as nucleating agents and generate an increase in the thermal stability of the r-PP phase. Finally, it was observed that addition of 4% of MAPP significantly improved the mechanical strength and impact behavior of the biocomposites. Regarding environmental issues, a cradle to gate life cycle assessment was made in order to define the carbon footprint of the materials.
dc.languageeng
dc.publisherIntechOpen
dc.relation26
dc.relation1
dc.relationHidalgo Salazar, M.Á., Correa Aguirre, J.P., Montalvo Navarrete, J.M., López Rodríguez, D.F., Rojas González, A.F. (2019). Recycled polypropylene coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. En Evingür, G. A., & Pekcan, Ö.,& Achilias, D. S., (Eds.).Thermosoftening Plastics. IntechOpen, ( pp. 1-26). DOI: 10.5772/intechopen.81635
dc.relationThermosoftening Plastics
dc.relation[1] Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, et al. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express. 2017;7(1):72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28353158
dc.relation[2] Leão RM, da Luz SM, Araújo JA, Christoforo AL, Leão RM, da Luz SM,et al. The recycling of sugarcane fiber/polypropylene composites. Materials Research. 2015;18(4):690-697. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000400690&lng=en&tlng=en
dc.relation[3] Sarasini F, Tirillò J, Zuorro A, MaffeiG, Lavecchia R, Puglia D, et al. Recycling coffee silverskin in sustainable composites based on a poly (butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Industrial Crops and Products. 2018;118:311-320. Available from: .sciencedirect.com/science/article/pii/S0926669018303005
dc.relation[4] Abba HA, Nur IZ, Salit SM. Review of agro waste plastic composites production. Journal of Minerals and Materials Characterization and Engineering. 2013;1(05):271-279. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jmmce.2013.15041
dc.relation[5] Berto D, Rampazzo F, Gion C, Noventa S, Ronchi F, Traldi U, et al. Preliminary study to characterize plastic polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS). Chemosphere. 2017;176:47-56. Available from: ] Ambientales UI de SC de E eI, Energética U de PMi, Instituto de Hidrología M y EAI. Atlas del potencial energético de la biomasa residual en Colombia. 2011; Available from: https://bdigital.upme.gov.co/handle/001/1058
dc.relation[7] Ebrahimi M, Caparanga AR, Ordono EE, Villaflores OB. Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation. Renewable Energy. 2017; 109:41-48. Available from: https://www.sciencedirect.com/science/article/pii/S0960148117301933
dc.relation[8] Lertwattanaruk P, Suntijitto A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction and Building Materials. 2015;94:664-669. Available from: https://www.sciencedirect.com/science/article/pii/S0950061815301823
dc.relation[9] Conesa JA, Sánchez NE, Garrido MA, Casas JC. Semivolatile and volatile compound evolution during pyrolysis and combustion of Colombian coffee husk. Energy & Fuels. 2016;30(10): 7827-7833. Available from: http://pubs.acs.org/doi/10.1021/acs.energyfuels.6b00791
dc.relation[10] de Carvalho Oliveira F, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, et al. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource Technology. 2018;257:172-180. Available from: https://www.sciencedirect.com/science/article/pii/S0960852418300488?via%3Dihub
dc.relation[11] Manals-Cutiño EM, Salas-Tort D, Penedo-Medina M. Tecnología Química. Vol. 38. Tecnología Química. [Publisher not identified]; 2018. pp. 169-181. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852018000100013
dc.relation[12] ACOPLASTICOS. Plastics in Colombia [Internet]. 2018. Available from: http://www.acoplasticos.org/ index.php/mnu-nos/mnu-pyr/pec
dc.relation[13] CEMPRE-Colombia. National Study of Recycling and Recyclers: Approach to the Market of Recyclers and Experiences [Internet]. 2011. Available from: https://cempre.org.co/documentos/
dc.relation[14] Alvarado K, Blanco A, Taquechel A. Fibra de coco: Una alternativa ecológica como sustrato agrícola. [Internet]. 2008; 3:30-31. Available from: http://www.actaf.co.cu/revistas/revista_ao_95-2010/Rev2008-3/
dc.relation[15] Jaramillo Henao G, Zapata Márquez LM. Aprovechamiento de los residuos sólidos orgánicos en Colombia. instname Univ Antioquia [Internet]. 2008; Available from: http://bibliotecadigital.udea.edu.co/dspace/handle/10495/45
dc.relation[16] Joseph K, Thomas S, Pavithran C. Effect of chemical treatment on the tensile properties of short sisal fibrereinforced polyethylene composites. Polymer (Guildf). 1996;37(23): 5139-5149. Available from: https://www.sciencedirect.com/science/article/pii/0032386196001449
dc.relation[17] Lin B-J, Chen W-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research. 2015
dc.relation[18] Coutinho FMB, Costa THS, Carvalho DL. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 1997;65(6):1227-1235. Available from: http://doi.wiley.com/10.1002/%28SICI%291097-4628%2819970808%2965%3A6%3C1227%3A%3AAIDAPP18%3E3.0.CO%3B2-Q
dc.relation[19] La Mantia FP, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesión promoters. Composite Interfaces. 2007; 14(7–9):685-698. Available from: https://www.tandfonline.com/doi/full/10.1163/156855407782106500
dc.relation[20] Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. Acetylated plant-fiberreinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer – Plastics Technology and Engineering. 2000; 39(4):757-781. Available from: http://www.tandfonline.com/doi/abs/10.1081/PPT-100100057
dc.relation[21] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results in Physics. 2018;8: 461-467. Available from: https://www.sciencedirect.com/science/article/pii/S2211379717322829
dc.relation[22] La Mantia FP, Morreale M. Green composites: A brief review. Composites. Part A, Applied Science and Manufacturing. 2011;42(6):579-588. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X11000406
dc.relation[23] AL-Oqla FM, Salit MS. Materials Selection for Natural Fiber Composites. London: Woodhead Publishing; 2017. 278 p
dc.relation[24] Ashik KP, Sharma RS. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering. 2015; 3(05):420-426. Available from: http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236/jmmce.2015.35044
dc.relation[25] Väisänen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production. 2017; 149:582-596. Available from: https://www.sciencedirect.com/science/article/pii/S095965261730358X
dc.relation[26] Cheung WM, Leong JT, Vichare P. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. Journal of Cleaner Production. 2017;167:759-775. Available from: https://www.sciencedirect.com/science/article/pii/S0959652617319492
dc.relation[27] Pang M-M, Pun M-Y, Chow W-S, Ishak ZAM. Carbon footprint calculation for thermoformed starchfilled polypropylene biobased materials. Journal of Cleaner Production. 2014;64: 602-608. Available from: https://www.sciencedirect.com/science/article/pii/S0959652613004873
dc.relation[28] Korol J, Burchart-Korol D, Pichlak M. Expansion of environmental impact assessment for eco-efficiency evaluation of biocomposites for industrial application. Journal of Cleaner Production. 2016;113:144-152. Available from: https://www.sciencedirect.com/science/article/pii/S0959652615018338
dc.relation[29] Reinders MJ, Onwezen MC, Meeusen MJG. Can bio-based attributes upgrade a brand? How partial and full use of bio-based materials affects the purchase intention of brands. Journal of Cleaner Production. 2017;162:1169-1179. Available from: https://www.sciencedirect.com/science/article/pii/S0959652617312969
dc.relation[30] Wall-Markowski CA, Kicherer A, Saling P. Using eco-efficiency analysis to assess renewable-resource-based technologies. Environmental Progress. 2004;23(4):329-333. Available from: http://doi.wiley.com/10.1002/ep.10051
dc.relation[31] Rojas González AF, Ruales Salcedo ÁV. Características energéticas de combustibles densificados de residuos de la uva isabella (Viti labrusca L.). Rev Mutis. 2016;5(2):5-15. Available from: https://revistas.utadeo.edu.co/index.php/mutis/article/view/1069
dc.relation[32] Rowell RM, Young RA, Rowell JK. Paper and Composites from Agro-Based Resources. New York: CRC/Lewis Publishers; 1997. 446 p
dc.relation[33] Sluiter A, Hames B, Ruiz CS, Sluiter J, Templeton D, DC. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: April 2008; Revision Date: July 2011 (Version 07-08-2011) - 42618.pdf. Tech Rep NREL/TP -510-42618. 2008;(January): 1-15. Available from: https://searchworks.stanford.edu/view/7616741
dc.relation[34] Wang Y, Fu Q, Li Q, Zhang G, Shen K, Wang Y-Z. Ductile-brittle-transition phenomenon in polypropylene/ethylenepropylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. Journal of Polymer Science Part B: Polymer Physics. 2002;40(18):2086-2097. Available from: http://doi.wiley.com/10.1002/polb.10260
dc.relation[35] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89(5):913-933. Available from: https://www.sciencedirect.com/science/article/pii/S0016236109004967
dc.relation[36] de Oliveira JL, da Silva JN, Graciosa Pereira E, Oliveira Filho D, Rizzo CD. Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification. Renewable and Sustainable Energy Reviews. 2013;21: 52-58. Available from: https://www.sciencedirect.com/science/article/pii/S1364032112007289
dc.relation[37] Ismail TM, Abd El-Salam M, Monteiro E, Rouboa A. Eulerian – Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Applied Thermal Engineering. 2016; 106:1391-1402. Available from: https://www.sciencedirect.com/science/article/pii/S135943111631016X
dc.relation[38] Mythili R, Venkatachalam P, Subramanian P, Uma D. Characterization of bioresidues for biooil production through pyrolysis. Bioresource Technology. 2013;138:71-78. Available from: https://www.sciencedirect.com/science/article/pii/S0960852413005543
dc.relation[39] Hietala M, Oksman K. Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion. Composites. Part A, Applied Science and Manufacturing. 2018;109: 538-545. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X18301453
dc.relation[40] Castellani R, Di Giuseppe E, Beaugrand J, Dobosz S, Berzin F, Vergnes B, et al. Lignocellulosic fiber breakage in a molten polymer. Part 1. Qualitative analysis using rheo-optical observations. Composites. Part A, Applied Science and Manufacturing. 2016;91:229-237. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X16303426
dc.relation[41] Jung S-H, Cho M-H, Kang B-S, Kim J-S. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology. 2010;91(3):277-284. Available from: https://www.sciencedirect.com/science/article/pii/S037838200900321X
dc.relation[42] Kunwar B, Moser BR, Chandrasekaran SR, Rajagopalan N, Sharma BK. Catalytic and termal depolymerization of low value postconsumer high density polyethylene plastic. Energy. 2016;111:884-892. Available from: https://www.sciencedirect.com/science/article/pii/S0360544216307976
dc.relation[43] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta. 2017; 658:93-100. Available from: https://www.sciencedirect.com/science/article/pii/S004060311730268X
dc.relation[44] Azizi K, Keshavarz Moraveji M, Abedini NH. Simultaneous pyrolysis of microalgae C. vulgaris, wood and polymer: The effect of third component addition. Bioresource Technology. 2018; 247:66-72. Available from: https://www.sciencedirect.com/science/article/pii/S0960852417316085
dc.relation[45] Uzun BB, Yaman E. Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis. Journal of the Energy Institute. 2017;90(6):825-837. Available from: https://www.sciencedirect.com/science/article/pii/S1743967116301337
dc.relation[46] Galhano dos Santos R, Bordado JC, Mateus MM. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel. 2018; 221:72-77. Available from: https://www.sciencedirect.com/science/article/pii/S0016236118302515
dc.relation[47] Jeguirim M, Limousy L, Fossard E. Characterization of coffee residues pellets and their performance in a residential combustor. International Journal of Green Energy. 2016;13(6): 608-615. Available from: http://www. tandfonline.com/doi/full/10.1080/15435075.2014.888664
dc.relation[48] Bajwa DS, Wang X, Sitz E, Loll T, Bhattacharjee S. Application of bioethanol derived lignin for improving physico-mechanical properties of thermoset biocomposites. International Journal of Biological Macromolecules. 2016;89:265-272. Available from: https://www.sciencedirect.com/science/article/pii/S0141813016303944?via%3Dihub
dc.relation[49] Collazo-Bigliardi S, Ortega-Toro R, Chiralt BA. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers. 2018;191:205-215. Available from: https://www.sciencedirect.com/science/article/pii/S0144861718302789
dc.relation[50] Baêta BEL, Cordeiro PH de M, Passos F, Gurgel LVA, de Aquino SF, Fdz-Polanco F. Steam explosión pretreatment improved the biomethanization of coffee husks. Bioresource Technology. 2017;245: 66-72. Available from: https://www.sciencedirect.com/science/article/pii/S0960852417314244
dc.relation[51] Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy. 2018;129:695-716. Available from: https://www.sciencedirect.com/science/article/pii/S0960148117303427
dc.relation[52] Agustin-Salazar S, Cerruti P, Medina-Juárez LÁ, Scarinzi G, Malinconico M, Soto-Valdez H, et al. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. International Journal of Biological Macromolecules. 2018;115:727-736. Available from: https://www.sciencedirect.com/science/article/pii/S014181301735064X
dc.relation[53] Tran D-T, Lee HR, Jung S, Park MS, Yang J-W. Lipid-extracted algal biomass based biocomposites fabrication with poly(vinyl alcohol). Algal Research. 2018;31:525-533. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416302995
dc.relation[54] Ayrilmis N, Kaymakci A, Güleç T. Potential use of decayed wood in production of wood plastic composite. Industrial Crops and Products. 2015;74: 279-284. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015300352
dc.relation[55] Migneault S, Koubaa A, Perré P, Riedl B. Effects of wood fiber Surface chemistry on strength of wood–plastic composites. Applied Surface Science. 2015;343:11-18. Available from: https://www.sciencedirect.com/science/article/pii/S0169433215005462
dc.relation[56] Arjmandi R, Ismail A, Hassan A, Abu BA. Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials. 2017;152: 484-493. Available from: https://www.sciencedirect.com/science/article/pii/S0950061817313880
dc.relation[57] Huang L, Mu B, Yi X, Li S, Wang Q. Sustainable use of coffee husks for reinforcing polyethylene composites. Journal of Polymers and the Environment. 2018;26(1):48-58. Available from: http://link.springer.com/10.1007/s10924-016-0917-x
dc.relation[58] Lisperguer J, Bustos X, Saravia Y, Escobar C, Venegas H. Efecto de las caracteristicas de harina de madera en las propiedades físico-mecánicas y térmicas de polipropileno reciclado. Maderas. Ciencia y tecnología. 2013;15 (ahead). Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2013005000025&lng=en&nrm=iso&tlng=en
dc.relation[59] Bledzki AK, Franciszczak P, Osman Z, Elbadawi M. Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products. 2015;70: 91-99. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015001880
dc.relation[60] Nunes SG, da Silva LV,Amico SC, Viana JD, Amado FDR. Study of composites produced with recovered polypropylene and piassava Fiber. Materials Research. 2016;20(1):144-150. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000100144&lng=en&tlng=en
dc.relation[61] Nourbakhsh A, Baghlani FF, Ashori A. Nano-SiO2 filled rice husk/polypropylene composites: Physicomechanical properties. Industrial Crops and Products. 2011;33(1):183-187. Available from: https://www.sciencedirect.com/science/article/pii/S0926669010002554
dc.relation[62] Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures. 2007;77(1):45-55. Available from: https://www.sciencedirect.com/science/article/pii/S0263822305001522
dc.relation[63] Yang H-S, Kim H-J, Son J, Park H-J, Lee B-J, Hwang T-S. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite Structures. 2004;63(3–4): 305-312. Available from: https://www.sciencedirect.com/science/article/pii/S026382230300179X
dc.relation[64] Hidalgo-Salazar MA, Munõz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. International Journal of Polymer Science. 2015:2015;12-18
dc.relation[65] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE–Al–fique composite materials. Composites. Part B, Engineering. 2013;55:345-351. Available from: https://www.sciencedirect.com/science/article/pii/S1359836813003430
dc.relation[66] Audsley E, Brander M, Chatterton JC, Murphy-Bokern D, Webster C, Williams AG. How low can we go? An assessment of greenhouse gas emissions from the UK foodsystem and the scope reduction by 2050. Report for the WWF and Food ClimateResearch Network. 2010; Available from: https://dspace.lib.cranfield.ac.uk/handle/1826/6503
dc.relation[67] Factor marginal de emisión de gases de efecto invernadero del Sistema Interconectado Nacional para proyectos aplicables al Mecanismo de Desarrollo Limpio (MDL). 2014. Available from: https://www.icbf.gov.co/cargues/avance/docs/resolucion_minminas_91304_2014.htm
dc.relation[68] Guía de cálculo de emisiones de GEI. Inicio. Generalitat de Catalunya [Internet]. 2017. Available from: http:// canviclimatic.gencat.cat/es/redueix_emissions/com-calcular-emissions-degeh/guia_de_calcul_demissions_de_co2/
dc.relation[69] Turner DA, Williams ID, Kemp S. Greenhouse gas emission factors for recycling of source-segregated waste materials. Resources, Conservation and Recycling. 2015;105:186-197. Available from: https://www.sciencedirect.com/science/article/pii/S0921344915301245
dc.relation[70] Noponen MRA, Edwards-Jones G, Haggar JP, Soto G, AttarzadehN,Healey JR. Greenhouse gas emissions in coffee grownwith differing input levels under conventional and organic management. Agriculture, Ecosystems and Environment. 2012;151:6-15. Available from: https://www.sciencedirect.com/science/article/pii/S0167880912000345
dc.relation[71] Franklin associates. Cradle-to-Gate Life Cycle Inventory (LCI) of Nine Plastics Resins and Four Polyurethane Precursors - August 2011 [Internet]. 2011. Available from: http://www.fal.com/projects.html
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - IntechOpen, 2019
dc.titleRecycled polypropylene coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies
dc.typeCapítulo - Parte de Libro


Este ítem pertenece a la siguiente institución