dc.contributorUniversidad Nacional de Colombia, Sede Medellín
dc.creatorSalcedo Mendoza, Jairo Guadalupe
dc.creatorLuz Marina, Flórez Pardo
dc.creatorLópez Galán, Jorge Enrique
dc.date.accessioned2021-11-04T17:04:34Z
dc.date.accessioned2022-09-22T18:37:45Z
dc.date.available2021-11-04T17:04:34Z
dc.date.available2022-09-22T18:37:45Z
dc.date.created2021-11-04T17:04:34Z
dc.date.issued2019-07
dc.identifier127353
dc.identifierhttps://hdl.handle.net/10614/13402
dc.identifier10.15446/dyna.v86n210.75286
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3455496
dc.description.abstractIn the production of ethanol from agroindustrial crop residues, one of the critical stages in the process is the conversion of lignocellulosic material to simple sugars, which can be done chemically or enzymatically. In this research, the enzymatic activities of commercial enzymes were evaluated for their influence on the degradation of lignocellulosic materials from sugar cane harvest residues (leaves and top cane). Eight substrates were pretreated with different delignification methods. Likewise, five enzymatic preparations were configured. An analysis of the enzyme-substrate interactions was conducted through fuzzy system analysis. The results showed regions of maximum enzymatic activity for residues of the sugarcane harvest, between 20-30 Filter Paper Units (FPU) /mL values lower than 500 pNPG (p-Nitrofenol-α-D-Glucopyranoside) U / mL of activity beta-glucosidase and hemicellulase activity between 50 and 70 IU / mL, confirming that the use of large amounts of cellulolytic enzymes is not necessary
dc.description.abstractEn la producción de etanol a partir de residuos agroindustriales, una de las etapas críticas en el proceso es la conversión del material lignocelulósico a azúcares simples, que puede realizarse química o enzimáticamente. En esta investigación, se evaluó la influencia de las actividades enzimáticas de las enzimas comerciales para degradar materiales de residuos de cosecha de la caña de azúcar (hojas y cogollos). Ocho sustratos fueron pretratados con diferentes métodos de deslignificación, con cinco preparaciones enzimáticas. Se utilizó un análisis de las interacciones enzima-sustrato, a través del análisis del sistema difuso. Los resultados mostraron regiones de actividad enzimática entre 20-30 FPU / mL y valores inferiores a 500 pNPG U / mL de actividad beta-glucosidasa y para actividad hemicelulasa entre 50 y 70 IU / mL, confirmando que el uso de grandes cantidades de enzimas celulolíticas no es necesario
dc.languageeng
dc.publisherUniversidad Nacional de Colombia, Sede Medellín
dc.publisherMedellìn
dc.relationVolumen 86, número 210 (2019)
dc.relation41
dc.relation210
dc.relation35
dc.relation86
dc.relationSalcedo Mendoza, J.G., Florez Pardo, L.M., López Galán, J. E. (2019). Significant enzymatic activities in the residues hydrolysis of the sugar cane harvest. Revista DYNA, (Vol. 86 (210), pp. 35-41. https://doi.org/10.15446/dyna.v86n210.75286
dc.relationDYNA
dc.relation[1] FEPA - Fondo de estabilización de los precios del azúcar, [en líena]. 2014. Disponible en: http://www.fepa.com.co
dc.relation[2] CENICAÑA - Centro de Investigación de la Caña de Azúcar. Indicadores de productividad de la industria azucarera colombiana entre enero y agosto de 2006 - 2007 [en línea]. Florida, Valle del Cauca. Disponible en: http://www.cenicana. org/ web/
dc.relation[3] Simas-Días, D., Acevedo-Jaramillo, L.Y., Vasconcelos, U. and Pereira, N., Characterization of glucosidases produced by Aspergillus niger Atcc 1004 in submerged fermentation from sugarcane bagasse. Revista Mexicana de Ingeniería Química. [online]. 17, pp. 365-377, 2018. Available at: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/45
dc.relation[4] Peña-Maravilla, M., Calixto-Romo, M.A., K. Guillén-Navarro, K., Sánchez, J.E. and Amaya-Delgado, L., Cellulases and xylanases production by Penicillium citrinum CGETCR using coffee pulp in solid-state fermentation. Revista Mexicana de Ingeniería Química, [online]. 16(3), pp. 757-769, 2017. Available at: http://www.redalyc.org/articulo.oa?id=62053304006
dc.relation[5] Chylenski, P., Forsberg, Z., St Ahlberg, J., V´Arnai, A., Lersch, M., Bengtsson, O., Sæbø, S., Jarle-Horn, S. and Eijsink, V., Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 20, pp. 16-23, 2017. DOI: 10.1016/j .jbiotec. 2017.02.009
dc.relation[6] Peciulyte, A., Pisano, M., De Vries, R. and Olsson, O., Hydrolytic potential of five fungal supernatants to enhance a commercial enzyme cocktail Biotechnol Lett. 39, pp. 1403-1411, 2007. DOI: 10.1007/s 10529-017-2371-9
dc.relation[7] Bhatia, L., Chandel, A.K., Singh, A.K. and Singh, O.V., Biotechnological advances in lignocellulosic ethanol production. In: Singh, O. and Chandel, A. (eds), Sustainable biotechnology- Enzymatic resources of renewable energy. Springer, Cham, 2018, pp 57-82, DOI: 10.1007/978-3-319-95480-6_3
dc.relation[8] Meng, X. and Ragauskas, A.J., Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin. Biotechnol. 27, pp. 150-158, 2014. DOI: 10.1016/ j.copbio.2014.01.014
dc.relation[9] Sadaf, A. and Khare, S.K., Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour. Technol., 153, pp. 126-130, 2014. DOI: 10.1016/j. biortech.2013 .11.058.
dc.relation[10] Marembo, C, Mamphweli, S. and Okoh, O., Bioethanol production from lignocellulosic sugarcane leaves and tops, Journal of Energy in Southern Africa. 28, pp. 1-11, 2017, DOI: 10.17159/2413-3051/2017 /v28i3a2354
dc.relation[11] Chapla, D., Divecha, J., Madamwar, D. and Shah, A., Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem. Eng. J., 49, pp. 361-369, 2010. DOI: 10.1016/j.bej.2010.01.012.
dc.relation[12] Hongdan, Z., Shaohua, X. and Shubin, W., Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresour. Technol., 143, pp. 391-396, 2013. DOI: 10.1016 /j.biortech .2013.05.103
dc.relation[13] Pensupa, N., Jin, M., Kokolski, M., Archer, D.B. and Du, C., A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol., 149, pp. 261-267, 2013. DOI: 10.1016/j. biortech. 2013.09.061.
dc.relation[14] Bátori, V., Ferreira, J.A., Taherzadeh, M.J. and Lennartsson, P.R., Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. BioMed. Res. Int., 15, pp. 1-10, 2015. DOI: 10.1155/2015 /176371
dc.relation[15] Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R. and Taherzadeh, M.J., Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind. Crops Prod., 69, pp. 314-323, 2015. DOI: 10.1016/j.indcrop. 2015. 02.038.
dc.relation[16] Knawang-Chhunji, K.I., Madhao, M. and Rintu-Banerjee, R., Optimization of saccharification of enzymatically pretreated sugarcane tops by response surface methodology for ethanol production, Biofuels, 10, pp. 73-80, 2019, DOI: 10.1080/ 17597269. 2017.1409058.
dc.relation[17] Mokomele, T., Da Costa Sousa, L., Balan, V., Van -Rensburg, E., Dale, D. and Görgens., J., Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefiner, Biotechnol Biofuels, 11 pp. 11-17, 2018, DOI: 10.1186/s13068-018-1130-z
dc.relation[18] Sanchez, O. and Cardona, C., Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99, pp. 5270-5295, 2008. DOI: 10.1016/j.biortech. 2007.11.013
dc.relation[19] Malgas, S., Chandra, R., Van- Dyk, J.S., Saddler, J.N. and Pletschke, B.I., Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods, Bioresource Technology, 245, pp.46-52, 2017 DOI: 10.1016/j.biortech. 2017.08.186
dc.relation[20] Eveling, D., Mandels, M., Andreotti, R. and Rocche, C., Measurement of saccharifiying cellulose. Biothecnology for biofuels. pp. 2-21, 2009. DOI: 10.1186/1754-6834-2-21
dc.relation[21] Bailey, M., Biely, P. and Pountanen, K., Interlaboratory testig of methods for assay of xylanase activity. Journal of Biotechnology, 23, pp. 257-270, 1992. DOI: 10.1016/0168-1656(92)90074-J
dc.relation[22] Megazyme International Ireland Limited Ltda., Assay of endo 1-4-β-D Galactanase using azo -galactan (agalp), Assay of 1-4-β- endo Mannanase using AZO- carob galactomannan, Assay of Rhamnogalacturonanase Using Azo- Rhamnogalacturonan AZRH [online]. (11/99). 2009. Available at: https://secure.megazyme.com /files/Booklet
dc.relation[23] Ghose, T.K., Measure cellulose activities, Pure & Appl. Chem. [online]. 59, pp. 257-268. Avaqilable at: https://www.iupac.org/ publications. 1987
dc.relation[24] Salcedo, J., Enzymatic hydrolysis of sugarcane crop residues (leaves and top cane) for the production of ethanol. Thesis PhD in Engineering. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2011.
dc.relation[25] Van-Soest, P., Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content, Journal of the AOAC, 46, pp. 829-835, 1987.
dc.relation[26] Xiaolu, W., Bin, Y. and Su, X., Linking enzymatic oxidative degradation of lignin to organics detoxification. Int. J. Mol. Sci., 19, pp. 2-17, 2018, DOI: 10.3390/ijms19113373
dc.relation[27] Jong-Rok, J., Murugesan, K., Kim, Y., Kim, E. and Chang, Y., Synergistic effect of laccase mediators on entachlorophenol removal by Ganoderma lucidum laccase. Appl Microbiol Biotechnol., 81, pp. 783-790, 2008. DOI: 10.1007/s00253-008-1753-2
dc.relation[28] Mutis, D., Delignification of sugar cane residues (leaves and top cane) with chemical processes, Thesis. Escuela de Ingeniería Química, Universidad del Valle, Colombia. 2009.
dc.relation[29] Bhattacharya, D., Germinario, L. and Winter, W., Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, 73, pp. 371-377, 2008. DOI: 10.1016/j.carbpol. 2007.12.005
dc.relation[30] Miller, G., Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical chemistry, 31, pp. 426- 426, 1959. DOI: 10.1021/ ac60147a030
dc.relation[31] Patel, H., Chapla, D., Divecha, J. and Shah, A., Improved yield of α- l - arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover. Bioresour Bioproces, 2, pp. 2-14, 2015. DOI: 10.1186/s40643-015-0039-7
dc.relation[32] Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. and Osborne, J., A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol., 98, pp. 3000-3011, 2007. DOI: 10.1016/j .biortech. 2006.10.022
dc.relation[33] Kubicek, C.P. and Penttilä, M.E., Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (Eds.), Trichoderma and Gliocladium: enzymes, Biological Control and Commercial Applications, 2, pp. 49-72, 1998.
dc.relation[34] Gasparotto, J.M., Werle, L.B., Foletto, E.L., Kuhn, R.C., Jahn, S.L. and Mazutti, M.A., Production of cellulolytic enzymes and application of crude enzymatic extract for sacchar- ification of lignocellulosic biomass. Appl Biochem Biotechnol., 72, pp. 175-560, 2005. DOI: 10.1007/s12010- 014- 1297-0
dc.relation[35] Zhang, L., Liu, Y., Niu, X., Liu, Y. and Liao, W., Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma ree- sei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy, 37, pp. 16-24, 2012. DOI: 10.1016/j.biombioe. 2011.12.044
dc.relation[36] Adsula, MG., Ghuleb, J., Shaikhb, H., Singhb, R., Bastawdea, K.B., Gokhalea, D.V. and Varma, A.J., Enzymatic hydrolysis of delignified bagasse polysaccharides, Carbohydrate Polymers, 62, pp. 6-10, 2005. DOI: 10.1016/j.carbpol. 2005. 07.010
dc.relation[37] Millett, M., Effland, M. and Caulfield, D., Influence of fine grinding on the hydrolysis of cellulosic materials—Acid Vs. Enzymatic. Advances in Chemistry, 181, pp. 71-89, 1979. DOI: 10.1021/ba-1979-0181.ch004
dc.relation[38] Mais, U., Esteghlalian, A., Saddler, J. and Mansfield, S., Enhancingthe enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology - Part A. Enzyme Engineering and Biotechnology, 98, pp. 815-832, 2002. DOI: 10.1385/ABAB:98- 100:1-9:815
dc.relation[39] Wyman, C., Handbook on Bioethanol: production and utilization. Taylor & Francis, Washinnton, DC, USA, 1996.
dc.relation[40] Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl. Microbial Biotechnol, 5, pp. 618-628, 2002. DOI: 10.1007 /s00253-002-1058-9
dc.relation[41] Mosier, N., Hall, P., Ladisch, C. and Ladisch, M., Reacction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol., 65, pp. 23-40, 1999. DOI: 10.1007/3-540-49194-5-2
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Nacional de Colombia, Sede Medellín, 2019
dc.titleSignificant enzymatic activities in the residues hydrolysis of the sugar cane harvest
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución