dc.creatorCabrera-López, John Jairo
dc.creatorVelasco-Medina, Jaime
dc.date.accessioned2019-11-14T16:47:02Z
dc.date.accessioned2022-09-22T18:37:17Z
dc.date.available2019-11-14T16:47:02Z
dc.date.available2022-09-22T18:37:17Z
dc.date.created2019-11-14T16:47:02Z
dc.date.issued2019-04-11
dc.identifier1557-9662 (en línea)
dc.identifier0018-9456 (impresa)
dc.identifierhttp://hdl.handle.net/10614/11491
dc.identifierdoi: 10.1109/TIM.2019.2904131
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3455341
dc.description.abstractAccuracy measurement of the impedance over a spread spectrum is the foundation of impedance spectroscopy (IS) technique, which has been recently proposed as a simple noninvasive technique for impedance spectrum measurement of a biological material (BM). This measurement is used to develop the equivalent electrical model (EEM) and to perform electrical characterization of the BM. In this paper, we propose a suitable approach for high-reliability electrical characterization of vegetable tissues by using a high-accuracy impedance spectrum measurement based on a structured algorithm, a flexible IS microsystem, and fractional-order (FO) models. The designed microsystem uses minimal discrete circuits and a programmable mixed-signal circuit, and it is validated by using EEMs of integer-order (IO), that is, the IS measures were compared with the simulation results. Also, impedance spectrum measures of vegetable tissues are carried out using the microsystem. In this case, five EEMs described by IO and FO differential equations are used to perform the parametric optimization using the Nelder-Mead ``simplex'' algorithm. Taking into account the obtained simulation results and experimental measures, it is possible to mention that the structured approach is suitable for applications that require to measure the bioimpedance over a spread spectrum, such as electrical IS (EIS) and electrical impedance tomography (EIT)
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineees, IEEE
dc.relation2
dc.relation69
dc.relationJ. Cabrera-López and J. Velasco-Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues," in IEEE Transactions on Instrumentation and Measurement, 69 ( 2), 469-478. doi: 10.1109/TIM.2019.2904131.
dc.relationIEEE Transactions on Instrumentation and Measurement
dc.relation[1] S. Grimnes and O. G. Martinsen, Bioimpedance Bioelectricity Basics, vol. 1, 3rd ed. New York, NY, USA: Oslo Elsevier, 2015.
dc.relation[2] D. E. Khaled, N. N. Castellano, J. A. Gazquez, R. M. G. Salvador, and F. Manzano-Agugliaro, “Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables,” J. Clean. Prod., vol. 140, pp. 1749–1762, Jan. 2017.
dc.relation[3] T. K. Bera, S. Bera, A. Chowdhury, D. Ghoshal, and B. Chakraborty, “Electrical impedance spectroscopy (EIS) based fruit characterization: A technical review,” in Proc. Comput., Commun. Elect. Technol., Mar. 2017, pp. 279–288.
dc.relation[4] D. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro, “Fruit and vegetable quality assessment via dielectric sensing,” Sensors, vol. 15, no. 7, pp. 15363–15397, Jun. 2015.
dc.relation[5] B. Panikuttira and C. P. O’Donnell, “Chapter 40-process analytical technology for the fruit juice industry,” Fruit Juices, pp. 835–847, Nov. 2018.
dc.relation[6] H. Ko, T. Lee, J.-H. Kim, J.-A. Park, and J.-P. Kim, “Ultralow-power bioimpedance IC with intermediate frequency shifting chopper,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 3, pp. 259–263, Mar. 2015.
dc.relation[7] J. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits,” Int. J. Eng. Technol., vol. 12, no. 4, pp. 1–8, Aug. 2012.
dc.relation[8] N. D. Semkin, K. E. Voronov, A. M. Telegin, and A. S. Vidmanov, “Bioimpedance research instrumentation system for the BION-M1 spacecraft,” Meas. Techn., vol. 57, no. 10, pp. 1209–1212, Jan. 2015.
dc.relation[9] F. Clemente, M. Romano, P. Bifulco, and M. Cesarelli, “EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters,” Measurement, vol. 58, pp. 476–482, Dec. 2014.
dc.relation[10] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements,” Med. Biol. Eng. Comput., vol. 52, no. 9, pp. 749–758, Sep. 2014.
dc.relation[11] A. AboBakr, L. A. Said, A. H. Madian, A. S. Elwakil, and A. G. Radwan, “Experimental comparison of integer/fractional-order electrical models of plant,” AEU-Int. J. Electron. Commun., vol. 80, pp. 1–9, Jun. 2017.
dc.relation[12] M.-H. Jun et al., “Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus,” Sci. Rep., vol. 8, no. 1, Dec. 2018, Art. no. 648.
dc.relation[13] F. Clemente, P. Arpaia, and C. Manna, “Characterization of human skin impedance after electrical treatment for transdermal drug delivery,” Measurement, vol. 46, no. 9, pp. 3494–3501, Nov. 2013.
dc.relation[14] N. Li, H. Xu, W. Wang, Z. Zhou, G. Qiao, and D. D.-U. Li, “A highspeed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method,” Meas. Sci. Technol., vol. 24, no. 6, May 2013, Art. no. 065701.
dc.relation[15] M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, “Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement,” IEEE Trans. Instrum. Meas., vol. 56, no. 4, pp. 1365–1372, Aug. 2007.
dc.relation[16] S. Grassini, S. Corbellini, E. Angelini, F. Ferraris, and M. Parvis, “Lowcost impedance spectroscopy system based on a logarithmic amplifier,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1110–1117, May 2015.
dc.relation[17] S. Grassini, S. Corbellini, M. Parvis, E. Angelini, and F. Zucchi, “A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art,” Measurement, vol. 114, pp. 508–514, Jan. 2018.
dc.relation[18] K. Chabowski, T. Piasecki, A. Dzierka, and K. Nitsch, “Simple wide frequency range impedance meter based on AD5933 integrated circuit,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 13–24, Mar. 2015.
dc.relation[19] A. S. Paterno, R. A. Stiz, and P. Bertemes-Filho, “Phase/magnitude retrieval algorithms in electrical bioimpedance spectroscopy,” in Proc. IFMBE, Sep. 2009, pp. 5–8.
dc.relation[20] J. J. Cabrera-López, J. Velasco-Medina, E. R. Denis, J. F. B. Caldero˝n, and O. J. G. Guevara, “Bioimpedance measurement using mixed-signal embedded system,” in Proc. IEEE 7th Latin Amer. Symp. Circuits Syst. (LASCAS), Mar. 2016, pp. 335–338.
dc.relation[21] P. Arpaia, U. Cesaro, and N. Moccaldi, “A bioimpedance meter to measure drug in transdermal delivery,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2324–2331, Oct. 2018.
dc.relation[22] A. Guha and A. Patra, “Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1836–1849, Aug. 2018.
dc.relation[23] R. Brajkoviˇc, T. Žagar, and D. Križaj, “Frequency synchronization analysis in digital lock-in methods for bio-impedance determination,” Meas. Sci. Rev., vol. 14, no. 6, pp. 343–349, Dec. 2014.
dc.relation[24] G. Lentka, “Using a particular sampling method for impedance measurement,” Metrol. Meas. Syst., vol. 21, no. 3, pp. 497–508, Aug. 2014.
dc.relation[25] P. J. Langlois, N. Neshatvar, and A. Demosthenous, “A sinusoidal current driver with an extended frequency range and multifrequency operation for bioimpedance applications,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 3, pp. 401–411, Jun. 2014.
dc.relation[26] D. Bouchaala, O. Kanoun, and N. Derbel, “High accurate and wideband current excitation for bioimpedance health monitoring systems,” Measurement, vol. 79, pp. 339–348, Feb. 2016.
dc.relation[27] U. Birgersson, “Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements,” Ph.D. dissertation, Dept. Clin. Sci., Intervent. Technol., Karolinska Inst., Stockholm, Sweden, 2012.
dc.relation[28] G. Cerro, M. Ferdinandi, L. Ferrigno, M. Laracca, and M. Molinara, “Metrological characterization of a novel microsensor platform for activated carbon filters monitoring,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2504–2515, Oct. 2018.
dc.relation[29] Y. Mohamadou, F. Momo, L. Theophile, C. N. K. Landry, T. Fabrice, and S. Emmanuel, “Accuracy enhancement in low frequency gain and phase detector (AD8302) based bioimpedance spectroscopy system,” Measurement, vol. 123, pp. 304–308, Jul. 2018.
dc.relation[30] J. Maldonado et al., “Evaluation of electric impedance spectroscopy (EIS) to determine breast cancer type in voluntary patients,” in Proc. IFMBE, vol. 33, 2011, pp. 49–52.
dc.relation[31] G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, “Bioimpedance analysis for the characterization of breast cancer cells in suspension,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2321–2329, Aug. 2012.
dc.relation[32] V. Nerguizian, A. Alazzam, I. Stiharu, and M. Burnier, “Characterization of several cancer cell lines at microwave frequencies,” Measurement, vol. 109, pp. 354–358, Oct. 2017.
dc.relation[33] A. Atangana and A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstr. Appl. Anal., vol. 2013, no. 1, Mar. 2013, Art. no. 279681.
dc.relation[34] I. Podlubny, Fractional Differential Equations. San Diego, CA, USA: Academic, 1999, pp. 1–366.
dc.relation[35] J. R. González-Araiza, M. C. Ortiz-Sánchez, F. M. Vargas-Luna, and J. M. Cabrera-Sixto, “Application of electrical bio-impedance for the evaluation of strawberry ripeness,” Int. J. Food Properties, vol. 20, no. 5, pp. 1044–1050, 2017.
dc.relation[36] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.titleStructured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución