dc.creatorLain, Santiago
dc.creatorSommerfeld, Martin
dc.date.accessioned2020-02-26T20:39:53Z
dc.date.available2020-02-26T20:39:53Z
dc.date.created2020-02-26T20:39:53Z
dc.date.issued2013-02
dc.identifierhttp://red.uao.edu.co//handle/10614/11991
dc.description.abstractThis paper deals with the transport of solid particles in pneumatic conveying systems, namely a 5 m horizontal pipe, a 90° bend and 5 m a vertical pipe. The pipe diameter is 150 mm in all cases and the average conveying velocity is 27 m/s. Three-dimensional stationary numerical computations were performed by the Euler/Lagrange approach in connection with the k–ε turbulence model accounting for full two-way coupling. Particle transport is calculated by considering all the relevant forces (including drag, gravity and transverse lift forces) and dispersion due to turbulence. Particle–wall collisions and wall roughness are modelled according to Sommerfeld and Huber [1] and inter-particle collisions are described by the stochastic modelling approach of Sommerfeld [2]. The objective of the present contribution is to demonstrate the capability of this computational approach for accurately predicting more complex pneumatic conveying systems where the transported powder has a rather wide size distribution. In particular the effect of inter-particle collisions will be demonstrated
dc.languageeng
dc.publisherElsevier
dc.relationLaín Beatove, S., Sommerfeld, M (2013). Characterisation of pneumatic conveying systems using the Euler/Lagrange approach. Powder Technology. 235, 1-49. http://red.uao.edu.co//handle/10614/11991
dc.relationPowder Technology
dc.relationM. Sommerfeld, N. Huber. Experimental analysis and modelling of particle–wall collisions International Journal of Multiphase Flow, 25 (1999), pp. 1457-1489
dc.relationM. Sommerfeld. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence International Journal of Multiphase Flow, 27 (2001), pp. 1828-1858
dc.relationW. Siegel. Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb Vogel Verlag, Würzburg (1991)
dc.relationJ. Eustice. Flow of water in curved pipes Proceedings of the Royal Society of London Series A, 84 (1910), pp. 107-118
dc.relationW.R. Dean. The stream-line motion of fluid in a curved pipe Philosophical Magazine, 30 (1928), pp. 673-693
dc.relationJ.A.C. Humphrey, J.H. Whitelaw, G. Yee. Turbulent flow in a square duct with strong curvature Journal of Fluid Mechanics, 103 (1981), pp. 363-443
dc.relationA.M.P.K. Taylor, J.H. Whitelaw, M. Yianneskis. Curved ducts with strong secondary motion: velocity measurements of developing laminar and turbulent flow. Transactions of the ASME Journal of Fluids Engineering, 104 (1982), pp. 350-359
dc.relationM.M. Enayet, M.M. Gibson, A.M.P.K. Taylor, M. Yianneskis Laser-Doppler measurements of laminar and turbulent flow in a pipe bend. International Journal of Heat and Fluid Flow, 3 (1982), pp. 213-219
dc.relationK. Sudo, M. Sumida, H. Hibara. Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend. Experiments in Fluids, 25 (1998), pp. 42-49
dc.relationA. Yilmaz, E.K. Levy. Roping phenomena in pulverized coal conveying lines. Powder Technology, 95 (1998), pp. 38-43
dc.relationH. Akilli, E.K. Levy, B. Sahin. Gas–solid flow behaviour in a horizontal pipe after vertical-to-horizontal elbow. Powder Technology, 116 (2001), pp. 43-52
dc.relationTh. Frank, F.P. Schade, D. Petrak. Numerical simulation and experimental investigation of a gas–solid two-phase flow in a horizontal channel. International Journal of Multiphase Flow, 19 (1993), pp. 187-198
dc.relationM. Sommerfeld, J. Kussin. Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel. Powder Technology, 142 (2004), pp. 180-192
dc.relationH. Akilli, E.K. Levy, B. Sahin. Investigation of gas–solid flow structure after a 90° vertical-to-horizontal elbow for low conveying gas velocities. Advanced Powder Technology, 16 (2005), pp. 261-264
dc.relationB. Kuan, W. Yang, M.P. Schwarz. Dilute gas–solid two-phase flows in a curved 90° duct bend: CFD simulation with experimental validation. Chemical Engineering Science, 62 (2007), pp. 2068-2088
dc.relationZ.F. Tian, K. Intahvong, J.Y. Tu, G.H. Yeoh. Numerical investigation into the effects of wall roughness on a gas-particle flow in a 90° bend. International Journal of Heat and Mass Transfer, 51 (2008), pp. 1238-1250
dc.relationS. Laín, M. Sommerfeld. Experimental and numerical study of the motion of non-spherical particles in wall bounded turbulent flows. Universidad Autónoma de Occidente, Cali (2008)
dc.relationS. Laín, M. Sommerfeld. Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness. Powder Technology, 184 (2008), pp. 76-88
dc.relationM. Sommerfeld, S. Laín. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiphase Science and Technology, 21 (2009), pp. 123-140
dc.relationS. Laín. On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow With the Euler–Lagrange Approach. Shaker Verlag, Aachen, Germany (2010)
dc.relationS. Laín, M. Sommerfeld, J. Kussin. Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow. International Journal of Heat and Fluid Flow, 23 (2002), pp. 647-656
dc.relationR. Mei. An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. International Journal of Multiphase Flow, 18 (1992), pp. 145-147
dc.relationB. Oesterlé, T. Bui Dinh. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Experiments in Fluids, 25 (1998), pp. 16-22
dc.relationM.F. Göz, S. Laín, M. Sommerfeld. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28 (2004), pp. 2727-2733
dc.relationC.T. Crowe, M.P. Sharma, D.E. Stock. The particle-source-in-cell (PSI-cell) model for gas-droplet flows. Journal of Fluids Engineering, 99 (1977), pp. 325-332
dc.relationS. Lain, M. Sommerfeld. Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour. International Journal of Multiphase Flow, 39 (2012), pp. 105-120
dc.relationS. Laín, M. Sommerfeld, B. Quintero. Numerical simulation of secondary flow in pneumatic conveying of solid particles in a horizontal circular pipe. Brazilian Journal of Chemical Engineering, 26 (2009), pp. 583-594
dc.relationY.T. Ng, S.C. Luo, T.T. Lim, Q.W. Ho. On the relation between centrifugal force and radial pressure gradient in flow inside curved and S-shaped ducts. Physics of Fluids, 20 (2008), p. 055109
dc.relationS. Laín, M. Sommerfeld. Structure and pressure drop in particle-laden gas flow through a pipe bend: a numerical analysis by the Euler–Lagrange approach Proc. ASME 2009 Fluids Engineering Division Summer Meeting FEDSM2009, paper FEDSM2009-78090 (2009)
dc.relationM. Sommerfeld. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. International Journal of Multiphase Flow, 29 (2003), pp. 675-699
dc.relationM. Sommerfeld, J. Kussin. Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part II. Integral properties and validation. International Journal of Multiphase Flow, 29 (2003), pp. 701-718
dc.relationPowder Technology. Volumen 235, (febrero 2013); páginas 764-782
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleCharacterisation of pneumatic conveying systems using the Euler/Lagrange approach
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución