dc.contributorGonzález Vargas, Andrés Mauricio
dc.creatorVergara Gil, Juan Camilo
dc.date.accessioned2020-02-14T13:22:11Z
dc.date.accessioned2022-09-22T18:36:33Z
dc.date.available2020-02-14T13:22:11Z
dc.date.available2022-09-22T18:36:33Z
dc.date.created2020-02-14T13:22:11Z
dc.date.issued2019-08-26
dc.identifierhttp://red.uao.edu.co//handle/10614/11893
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3455090
dc.description.abstractThis work presents the design and implementation of an electrocardiography simulator for academic use. For this purpose, was followed a methodology for the design of biomedical devices. During this process, the needs of the students during the bioinstrumentation courses and the aspects to be improved for the physiological variable simulation devices available in the laboratory were taken into account. The main problem was identified and based on this information the development of the simulator was carried out along with its innovative features. For the implementation of the device, the mathematical model and representation of the electrical signal of the heart of each of its leads were made using Fourier series. The signal adaptation circuit was designed and implemented to be simulated for emulating the twelve leads simultaneously. The operation of the simulator was validated and the maximum uncertainty of the simulated heart rate was calculated, which was four beats per minute (bpm). Finally, the device was evaluated at the academic level by conducting a workshop with students of bioinstrumentation and related courses, obtaining an excellent reception by them. These students understood with greater ease the concepts seen in electrocardiography during the laboratory practice and interacted with the different functions of the simulator relating the important parameters of the cardiac signal acquisition technique.
dc.languagespa
dc.publisherIngeniería Biomédica
dc.publisherDepartamento de Automática y Electrónica
dc.publisherFacultad de Ingeniería
dc.rightshttps://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-SinDerivadas 4.0 Internacional (CC BY-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.source[1] A. Chan, Biomedical Device Technology Principles and Design. Springfield, Illinois: Charles C Thomas • Publisher, LTD., pp. 239-261, 2008. [2] D. Mariappan, M. Sankaranarayanan, A. Priyasha Corera, S. Malaichamy y D. Mariappan, "Ocure: open source ECG simulator for academic applications in biomedical signal processing and public health programs". Kharagpur, India, pp. 1-3, 2013. [3] Fluke Biomedical, "PS410 Users Manual", USA, 2006. [4] E. Güney, Z. Eksi y M. Çakırog˘lu, "WebECG: A novel ECG simulator based on MATLAB Web Figure", Advances in Engineering Software, pp. 167-174, 2011. [5] "Free ECG Simulator! - SkillSTAT", SkillStat, 2018. [En línea]. Disponible en: https://www.skillstat.com/tools/ecg-simulator. [Accessed: 20- Jul- 2018]. [6] C. Castellano, M. Perez de Juan y F. Attie, Electrocardiografía Clínica, 2ª ed. Madrid: Elsevier, 2004. [7] G. Tortora, B. Derrickson, Principios de anatomía y fisiología. 11ª ed, México DF. México. Editorial Médica Panamericana, Cap 6, 2010. [8] G. Clifford, F. Azuaje y P. McSharry, Advanced methods and tools for ECG data analysis. Boston: Artech House, 2006. [9] J. Webster, Medical Instrumentation Application and Design, 4a ed. USA: John Wiley and Sons, pp. 147-158, 2010. [10] Texas Instruments. INA128 DATASHEET, Texas Instruments Incorporated. USA 1995. Revised 2019 [11] T. Floyd, R. Navarro Salas, F. Rodríguez Ramírez y A. Vázquez Sánchez, Dispositivos electrónicos, 8ª ed. Ciudad de México: Pearson Educación de México, p. 710, 2017. [12] Rose, César & Trinidad Serna-Encinas, María. “Procesamiento del electrocardiograma para la Detección de Cardiopatías”. Research Gate. 2014.[13] L. Mahler, "ECG and blood pressure signals simulator", US3552036A, 1968. (Patente). [14] Stenmeier, J. Comunication Protocols. [ebook] Massachusets, pp.26-28, 2017 Disponible en: http://web.mit.edu/6.111/www/f2017/handouts/L13_4.pdf [Accessed 7 Feb. 2019]. [15] E. Stein y R. Shakarchi, Fourier analysis, 1a ed. Princeton: Princeton Univ. Press, 2006. [16] C. Caner, M. Engin y E. Engin, "The Programmable ECG Simulator", Journal of Medical Systems, vol. 32, no. 4, pp. 355-359, 2008. Disponible en: 10.1007/s10916-008-9140-1 [Accessed 5 April 2019]. [17] M. Mueller et al., "Teaching antiarrhythmic therapy and ECG in simulator-based interdisciplinary undergraduate medical education", British Journal of Anaesthesia, vol. 95, no. 3, pp. 300-304, 2005. Disponible en: 10.1093/bja/aei174 [Accessed 12 February 2019]. [18] Z. Jun-an, "The Design of ECG Signal Generator using PIC24F", Procedia Engineering, vol. 24, pp. 523-527, 2011. Disponible en: 10.1016/j.proeng.2011.11.2689 [Accessed 26 January 2019]. [19] NXP Semiconductors. PCF8591 DATASHEET, NXP B.V. USA 2013 [20] Texas Instruments. LF398 DATASHEET, Texas Instruments Incorporated. USA 2000. Revised 2018 [21] Texas Instruments. TL082 DATASHEET, Texas Instruments Incorporated. USA 1998. Revised 2018
dc.subjectIngeniería Biomédica
dc.subjectElectrocardiografía
dc.subjectSeries de Fourier
dc.subjectSimulador académico
dc.subjectElectrocardiography
dc.subjectFourier series
dc.titleDesarrollo de un simulador de electrocardiografía con propósito académico
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución