dc.creatorQuintero Arboleda, Brian
dc.creatorLain, Santiago
dc.creatorSommerfeld, Martin
dc.date.accessioned2022-05-31T16:51:05Z
dc.date.accessioned2022-09-22T18:36:05Z
dc.date.available2022-05-31T16:51:05Z
dc.date.available2022-09-22T18:36:05Z
dc.date.created2022-05-31T16:51:05Z
dc.date.issued2021-03
dc.identifier1873328X
dc.identifierhttps://hdl.handle.net/10614/13929
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3454925
dc.description.abstractIn this work an extended three-dimensional model to describe the process of wall collisions of arbitrary shaped non-spherical particles is developed. This model is derived as the generalized solution of the hard-sphere wall collision model described in Crowe et al. (2012) [1]. The validation of the new model is performed versus experimental results of the collision between cylindrical particles and a flat plate ((Sommerfeld et al., 2015 [2]), Sommerfeld and Lain (2018) [3]). The agreement between the measurements of linear normal and tangential velocities and the model predictions was found to be very good while the rotational velocities forecasted by the model showed also a satisfactory agreement with the experiments.
dc.languageeng
dc.publisherElsevier
dc.relation538
dc.relation526
dc.relation380
dc.relationQuintero Arboleda, B., Laín Behatove, S., Sommerfeld M. (2021). Derivation and validation of a hard-body particle-wall collision model for non-spherical particles of arbitrary shape. Powder Technology. 380, 526-538. https://doi.org/10.1016/j.powtec.2020.11.032
dc.relationPowder Technology
dc.relation[1] C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles, 2nd edition CRC Press, Boca Raton, U.S.A, 2012 ISBN 978-1-4398- 4050-4.
dc.relation[2] M. Sommerfeld, S. Lain, Z. Qadir, Strategy in modelling irregular shaped particle behavior in confined turbulent flows, Proceedings of the COST Action FP1005 Final Conference and EUROMECH Colloquium 566 “Anisotropic Particles in Turbulence”, Trondheim Norway 2015, pp. 70–74 , June 9. to 12.
dc.relation[3] M. Sommerfeld, S. Lain, Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows, Powder Technol. 332 (2018) 253–264.
dc.relation[4] S. Lain, M. Sommerfeld, Euler/ Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol. 184 (2008) 76–88.
dc.relation[5] S. Lain, M. Sommerfeld, Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behaviour, Int. J. Multiphase Flow 39 (2012) 105–120.
dc.relation[6] S. Lain, M. Sommerfeld, Characterisation of pneumatic conveying systems using the Euler/Lagrange approach, Powder Technol. 235 (2013) 764–782.
dc.relation[7] S. Lain, M. Garcia, B. Quintero, S. Orrego, CFD numerical simulations of Francis turbines, Rev. Facultad de Ingenieria Universidad de Antioquia 51 (2010) 24–33.
dc.relation[8] M. Sommerfeld, S. Lain, Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the Euler/Lagrange approach, Can. J. Chem. Eng. 93 (2015) 1–17.
dc.relation[9] M. Sommerfeld, S. Lain, in: E.E. Michalelides, C.T. Crowe, J.D. Schwarzkopf (Eds.), Euler/Lagrange methods. In Multiphase Flow Handbook, 2nd editionCRC Press, Taylor & Francis Group 2016, pp. 202–242 , Chapter 2.6.
dc.relation[10] K.W. Chu, A.B. Yu, Numerical simulation of complex particle–fluid flows, Powder Technol. 179 (2008) 104–114.
dc.relation[11] S.M. El-Behery, M.H. Hamed, M.A. El-Kadi, K.A. Ibrahim, CFD prediction of air–solid flow in 180° curved duct, Powder Technol. 191 (2009) 130–142.
dc.relation[12] A. Yilmaz, E.K. Levy, Formation and dispersion of ropes in pneumatic conveying, Powder Technol. 114 (2001) 168–185.
dc.relation[13] M. Bakhshesh, E. Goshtasbi Rad, M. Mehrvar, Effect of asymmetric branches on solid particles distribution in central gas stations (CGSs), Jordan J. Mech. Industrial Eng. 8 (2014) 56–65.
dc.relation[14] F.J. de Souza, A.L. Silva, J. Utzig, Four-way coupled simulations of the gas–particle flow in a diffuser, Powder Technol. 253 (2014) 496–508.
dc.relation[15] J.E. Hilton, P.W. Cleary, The influence of particle shape on flow modes in pneumatic conveying, Chem. Eng. Sci. 66 (2011) 231–240.
dc.relation[16] M. Sommerfeld, J. Kussin, Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol. 142 (2004) 180–192.
dc.relation[17] W. Siegel, Pneumatische Förderung: Grundlagen, Auslegung, Anlagenbau, Betrieb, Vogel Verlag, Würzburg, Germany, 1991.
dc.relation[18] J. Kussin, Experimentelle Studien zur Partikelbewegung und Turbulenzmodifikation in einem horizontalen Kanal bei unterschiedlichen Wandrauhigkeiten, Dissertation Martin-Luther-Universität Halle-Wittenberg, Germany, 2003 Zentrum für Ingenieurwissenschaften.
dc.relation[19] M. Sommerfeld, Kinetic simulations for analysing the wall collision process of nonspherical particles, Proc. ASME FEDSM 2002. Paper 31239. Montreal (Canada), July 14–18, 2002.
dc.relation[20] N. Gui, X. Yang, J. Tu, S.A. Jiang, Generalized particle-to-wall collision model for nonspherical rigid particles, Adv. Powder Technol. 27 (2016) 154–163.
dc.relation[21] M. Sommerfeld, Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: part I, Particle transport. Int. J. Multiphase Flow 29 (2003) 675–699.
dc.relation[22] B. van Wachem, M. Zastawny, F. Zhao, G. Mallouppas, Modelling of gas-solid turbulent channel flow with non-spherical particles with large stokes numbers, Int. J. Multiphase Flow 68 (2015) 80–92.
dc.relation[23] A. Wachs, L. Girolami, G. Vinay, G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary convex shape - part I: numerical model and validations, J. Adv. Powder Technol. 224 (2012) 374–389.
dc.relation[24] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol. 77 (1993) 79–87.
dc.relation[25] N.G. Deen, M. van Sint Annaland, M.A. van der Hoef, J.A.M. Kuipers, Review of discrete particle modeling of fluidized beds, Chem. Eng. Sci. 62 (2007) 28–44.
dc.relation[26] S. Matsumoto, S. Saito, On the mechanism of suspension of particles in horizontal pneumatic conveying: Monte Carlo simulation based on the irregular bouncing model, J. Chem. Eng. Jpn. 3 (1970) 83–92.
dc.relation[27] S. Matsumoto, S. Saito, Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model, J.Chem. Eng.Jpn. 3 (1970) 223–230.
dc.relation[28] Y. Tsuji, T. Oshima, Y. Morikawa, Numerical simulation of pneumatic conveying in a horizontal pipe, KONA 3 (1985) 38–51.
dc.relation[29] Y. Tsuji, Y. Morikawa, T. Tanaka, N. Nakatsukasa, M. Nakatani, Numerical simulation of gas-solid two-phase flow in a two-dimensional horizontal channel, Int. J. Multiphase Flow 13 (1987) 671–684.
dc.relation[30] Y. Tsuji, N.Y. Shen, Y. Morikawa, Lagrangian simulation of dilute gas-solid flows in a horizontal pipe, Adv. Powder Technol. Vol. 2 (1991) 63–81.
dc.relation[31] M. Sommerfeld, Modelling of particle/wall collisions in confined gas-particle flows, Int. J. Multiphase Flow 18 (1992) 905–926.
dc.relation[32] M. Sommerfeld, N. Huber, Experimental analysis and modelling of particle-wall collisions, Int. J. Multiphase Flow 25 (1999) 1457–1489.
dc.relation[33] S. Lain, M. Sommerfeld, A study of the pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow, Braz. J. Chem. Eng. 24 (2007) 801–812.
dc.relation[34] M. Mando, Turbulence Modulation by Non-spherical Particles. Ph.D. Thesis, Aalborg University, Uniprint, Denmark, 2009.
dc.relation[35] H. Pan, F. Liou, Numerical simulation of metallic powder flow in a coaxial nozzle for the laser aided deposition process, J. Mater. Process. Technol. 168 (2005) 230–244.
dc.relation[36] G. Grant, W. Tabakoff, Erosion prediction in turbomachinery resulting from environmental solid particles, J. Aircr. 12 (1975) 471–478.
dc.relation[37] S.V. Panfilov, Yu.M. Tsirkunov, Scattering of nonspherical particles rebounding from a smooth and a rough surface in a high-speed gas-particle flow, J. Appl. Mech. Tech. Phys. 49 (2008) 222–230.
dc.relation[38] H. Goldstein, Classical Mechanics, 2nd ed. Addison- Wesley, New York, 1980.
dc.relation[39] C. Yin, L. Rosendahl, S.K. Kaer, H. Sorensen, Modelling the motion of cylindrical particles in a nonuniform flow, Chem. Eng. Sci. 58 (2003) 3489–3498.
dc.relation[40] I. Gallily, A.H. Cohen, On the orderly nature of the motion of nonspherical aerosol particles II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle, J. Colloid Interface Sci. 68 (1979) 338–356.
dc.relation[41] A. Glielmo, N. Gunkelmann, T. Pöschel, Coefficient of restitution of aspherical particles, Phys. Rev. E 90 (2014) 052204 2014.
dc.relation[42] N. Almohammed, M. Breuer, Modeling and simulation of particle-wall adhesion of aerosol particles in particle-laden turbulent flows, Int. J. Multiphase Flow 85 (2016) 142–156.
dc.relation[43] F. Saeed, Experimental Investigation of Particle Wall Collisions of Non-Spherical Particles. Master Thesis, Otto-von-Guericke University Magdeburg, Germany, 2013.
dc.relation[44] R.C. Hibbeler, Dynamics, 12th edition Pearson Prentice-Hall, Englewood Cliffs NJ USA, 2010 ISBN 0-13-607791-9.
dc.relation[45] M. Byron, The rotation and translation of non-spherical particles in homogeneous isotropic turbulence. Ph.D. Thesis, University of California, Berkeley, USA, 2015.
dc.relation[46] B. Quintero, M. Sommerfeld, S. Lain, Z. Qadir, Modelling the wall collision of regular non-spherical particles and experimental validation, Proc. ASME FEDSM 2014. Paper 21610, 2014 , Chicago, Illinois (USA), August 3–7.
dc.relation[47] J. Wang, M. Zhang, L. Feng, H. Yang, Wu, Y. And Yue G., The behaviors of particlewall collision for non-spherical particles: experimental investigation, Powder Technol. 363 (2020) 187–194.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Elsevier B.V., 2021
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0032591020310858
dc.titleDerivation and validation of a hard-body particle-wall collision model for non-spherical particles of arbitrary shape
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución