dc.creatorMoreno-Chuquen, Ricardo
dc.creatorObando Ceron, Johan Samir
dc.date.accessioned2019-11-05T15:24:09Z
dc.date.accessioned2022-09-22T18:35:19Z
dc.date.available2019-11-05T15:24:09Z
dc.date.available2022-09-22T18:35:19Z
dc.date.created2019-11-05T15:24:09Z
dc.date.issued2018
dc.identifier18276660
dc.identifierhttp://hdl.handle.net/10614/11393
dc.identifierhttps://doi.org/10.15866/iree.v13i3.14210
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3454615
dc.description.abstractThe identification of topological vulnerabilities is a prerequisite for the study of security analysis. This paper presents a graph-theoretic framework to detect the minimum set of transmission lines interconnecting subnetworks inside of a power network. Moreover, the framework is used to develop a method to classify the criticality of substations. The approach can be used with power transfer distribution factors information to gain an insight about the power system security. Sometimes the power network exhibits high vulnerability related to critical transmission lines interconnecting critical substations from a physical point of view. The quantification of structural properties can provide meaningful information needed to assess and enhance the reliability and security of power system networks. The capabilities for the topological approach are illustrated on two large-scale networks. The proposed approach provides an effective tool for both real-time and offline environments for security analysis and control
dc.languageeng
dc.publisherInternational Review of Electrical Engineering, IREE
dc.relation3
dc.relation13
dc.relationMoreno-Chuquen, R., & Obando-Ceron, J. (2018). Network Topological Notions for Power Systems Security Assessment. International Review of Electrical Engineering (IREE), 237
dc.relationInternational Review of Electrical Engineering
dc.relationA. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, 3nd ed. New York, NY, USA: Wiley, 2014. http://dx.doi.org/10.1016/0140-6701(96)88715-7
dc.relationRami Reddy, B., Sujatha, P., Siva Reddy, Y., Interline Power Flow Controller (IPFC) to Improve the Voltage Stability and Contingency Analysis in Power System, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 109-115. http://dx.doi.org/10.15866/iree.v11i1.6790
dc.relationR. Albert, I. Albert, and G. L. Nakarado, Structural vulnerability of the North American power grid, Phys. Rev. E, vol. 69, pp. 1–10, Feb. 2004. http://dx.doi.org/10.1103/physreve.69.025103
dc.relationS. Arianos, E. Bompard, A. Carbone, and F. Xue, Power grid vulnerability: A complex network approach, Chaos, vol. 19, no. 01199, 2009. http://dx.doi.org/10.1063/1.3077229
dc.relationY. Zhu, J. Yan, Y. Sun, and H. He, Revealing cascading failure vulnerability in power grids using risk-graph, IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3274–3284, Dec. 2014. http://dx.doi.org/10.1109/tpds.2013.2295814
dc.relationP. Crucitti, V. Latora, and M. Marchiori, Locating critical lines in high-voltage electrical power grids, Fluctuation Noise Lett., vol. 5, no. 2, 2005. http://dx.doi.org/10.1142/s0219477505002562
dc.relationV. Latora and M. Marchiori, Vulnerability and protection of infrastructure networks, Phys. Rev. E, vol. 71, no. 015103(R), 2005. http://dx.doi.org/10.1103/physreve.71.015103 E. Bompard, D. Wu, F. Xue, Structural vulnerability of power systems: A topological approach, Electr. Power Syst. Res., vol. 81, pp. 1334–1340, 2011. http://dx.doi.org/10.1016/j.epsr.2011.01.021
dc.relationA. Peiravi, R. Ildarabadi, Graph partitioning Applications in Electrical Engineering with an Emphasis on Power System Intentional Islanding, (2009) International Review of Electrical Engineering (IREE), 4 (5), pp. 914-924
dc.relationT. Jiang, L. Bai, H. Jia, and F. Li, Spectral clustering-based partitioning of volt/VAR control areas in bulk power systems, IET Gener. Transm. Distrib. Vol. 11 Iss. 5, pp. 1126-1133, 2017. http://dx.doi.org/10.1049/iet-gtd.2016.0709
dc.relationJ. Quirós-Tortós, R. Sanchéz-García, J. Brodski, J.Bialek, and V. Terzija, Constrained spectral clustering-based methodology for intentional controlled islanding of large-scale power systems, IET Gener. Transm. Distrib. Vol. 9 Iss. 1, pp. 31-42, 2014. http://dx.doi.org/10.1049/iet-gtd.2014.0228
dc.relationR.Sanchéz-García, M. Fenelly, S. Norris, N. Wright, G. Niblo, J. Brodski, and J. Bialek, Hierarchical Spectral Clustering of Power Grids, IEEE Trans. Power Syst., Vol. 29, No. 5, 2014. http://dx.doi.org/10.1109/tpwrs.2014.2306756
dc.relationLaaksonen, H., Need for New Islanding Detection Schemes and Prioritization with Generator Grid Code Requirements, (2016) International Review of Electrical Engineering (IREE), 11 (2), pp. 160-170. http://dx.doi.org/10.15866/iree.v11i2.8348
dc.relationB. Bollobás, Modern Graph Theory. Springer Verlag, New York, p. 6, 1998 http://dx.doi.org/10.1007/978-1-4612-0619-4
dc.relationR.G. Busacker and T.L. Saaty, Finite Graphs and Networks: An Introduction with Applications, McGraw-Hill Book Company, New York, p. 109, 1965 http://dx.doi.org/10.2307/2282946
dc.relationF.R.K. Chung, Spectral Graph Theory, in Proc. Regional Conference Series in Mathematics, vol. 92, pp. 3-6, 1996. http://dx.doi.org/10.1090/cbms/092
dc.relationB. Mohar, The Laplacian Spectrum of Graphs, in Proc. Sixth International Conference on Theory and Applications of Graphs, Michigan, 1988
dc.relationC. Mayer, Matrix Analysis and Applied Linear Algebra, SIAM, pp. 673-674, 2000
dc.relationM.E.J. Newman, Finding Community Structure in Networks Using the Eigenvectors of Matrices, Phys. Rev. E.74, 2006. http://dx.doi.org/10.1103/physreve.74.036104
dc.relationNg, A.Y., Jordan, M.I., Weiss, Y., On spectral clustering: analysis and an algorithm, Adv. Neural Inf. Process. Syst., 2002, 2, pp. 849–856
dc.relationLee, J.R., Gharan, S.O., Trevisan, L.: Multi-way spectral partitioning and higher-order Cheeger inequalities, 44th Symp. on Theory of Computing, 2012, pp. 1117–1130 http://dx.doi.org/10.1145/2213977.2214078
dc.relationT. Güler and G. Gross, Generalized Line Outage Distribution Factors, IEEE Trans. Power Syst., Power Engineering Letters, vol. 22, no. 2, pp. 879–881, May 2007. http://dx.doi.org/10.1109/tpwrs.2006.888950
dc.relationK.M. Hall, An r-dimensional Quadratic Placement Algorithm, Management Science, vol. 17, No. 3, pp. 219-229, Nov. 1970. http://dx.doi.org/10.1287/mnsc.17.3.219
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleNetwork topological notions for power systems security assessment
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución