dc.creatorLain, Santiago
dc.creatorLópez Mejía, Omar Darío
dc.creatorTaborda Ceballos, Manuel Alejandro
dc.date.accessioned2019-11-05T20:56:36Z
dc.date.accessioned2022-09-22T18:35:12Z
dc.date.available2019-11-05T20:56:36Z
dc.date.available2022-09-22T18:35:12Z
dc.date.created2019-11-05T20:56:36Z
dc.date.issued2018-01-28
dc.identifier1996-1073 (en línea)
dc.identifierhttp://hdl.handle.net/10614/11403
dc.identifierhttps://doi.org/10.3390/en11020297
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3454565
dc.description.abstractThis study deals with the three-dimensional unsteady numerical simulation of the flow around a cross-flow vertical-axis water turbine (CFWT) of the Darrieus type. The influence of turbine design on its hydrodynamic characteristics and performance is investigated by means of a time-accurate Reynolds Averaged Navier Stokes (RANS) commercial solver. The flow unsteadiness is described using a transient rotor-stator model in connection with a sliding interface. A classical Darrieus straight blade turbine, based on the NACA0025 airfoil, has been modified adding winglets (symmetric and asymmetric designs) to the blades’ tips with the objective of reducing the strength of the detached trailing vortices. The turbulent features of the flow have been modelled by using different turbulence models (k-ε Renormalization Group, standard Shear Stress Transport, transition Shear Stress Transport and Reynolds Stress Model). As a result, the predicted hydrodynamic performance of the turbine including winglets increases, independently of the employed turbulence model, being the improvement higher when a symmetric winglet design is considered. Moreover, visualization of skin friction lines pattern and their connection with vorticity isosurfaces, illustrating the flow detachment in the three blade configurations, has been carried out. Finally, a short discussion about the intermittency behavior along a turbine revolution is presented
dc.languageeng
dc.publisherMDPI
dc.relation2
dc.relation11
dc.relationLaín, S., Taborda, M., & López, O. (2018). Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 11(2), 297. https://doi.org/10.3390/en11020297
dc.relationEnergies
dc.relation1. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross FlowWater Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]
dc.relation2. Trivedi, C.; Cervantes, M.J.; Dahlhaug, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74. [CrossRef]
dc.relation3. Trivedi, C.; Cervantes, M.J.; Gandhi, B.K. Investigation of a high head Francis turbine at runaway operating conditions. Energies 2016, 9, 149. [CrossRef]
dc.relation4. Caballero, A.D.; Laín, S. A review on Computational Fluid Dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 2013, 4, 103–130. [CrossRef]
dc.relation5. Göz, M.F.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [CrossRef]
dc.relation6. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Flow Technol. 2009, 21, 123–140. [CrossRef]
dc.relation7. Jin, X.; Zhao, G.; Gao, K.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain. Energy Rev. 2015, 42, 212–225. [CrossRef]
dc.relation8. Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422. [CrossRef]
dc.relation9. Untaroiu,A.;Wood,H.G.; Allaire, P.E.; Ribando, R.J. Investigation of Self-Sarting Capability ofVerticalAxisWind Turbines Using a Computational Fluid Dynamics Approach. J. Sol. Energy Eng. 2011, 133, 041010. [CrossRef]
dc.relation10. Hill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus turbines: The physics of self-starting. Proc. Inst. Mech. Eng. Part A 2008, 223, 21–29. [CrossRef]
dc.relation11. Castelli, M.R.; Benini, E. Effect of Blade Inclination Angle of a DarrieusWind Turbine. J. Turbomach. 2012, 134, 031016. [CrossRef]
dc.relation12. Siddiqui, M.S.; Durrani, N.; Akhtar, I. Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renew. Energy 2015, 74, 661–670. [CrossRef]
dc.relation13. Laín, S.; Osorio, C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. J. Sci. Ind. Res. 2010, 69, 906–912.
dc.relation14. Dai, Y.M.; Lam,W. Numerical study of straight-bladed Darrieus-type tidal turbine. ICE-Energy 2009, 162, 67–76. [CrossRef]
dc.relation15. Amet, E.; Maître, T.; Pellone, C.; Achard, J.L. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 2009, 131, 111103. [CrossRef]
dc.relation16. Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [CrossRef]
dc.relation17. Amet, E. Simulation Numérique D’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2009.
dc.relation18. Hall, T.J. Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine. Master’s Thesis, University of Washington, Washington, DC, USA, 2012.
dc.relation19. Pellone, C.; Maître, T.; Amet, E. 3D RANS modeling of a cross flow water turbine. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Singapore, 2014; pp. 405–418. ISBN 978-9-81-287615-7.
dc.relation20. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935. [CrossRef]
dc.relation21. Ferreira, C.S. The Near Wake of the VAWT, 2D and 3D Views of the VAWT Aerodynamics. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2009.
dc.relation22. Yao, J.; Wang, J.; Yuan, W.; Wang, H.; Cao, L. Analysis on the influence of turbulence model changes to aerodynamic performance of vertical axis wind turbine. Procedia Eng. 2012, 31, 274–281. [CrossRef]
dc.relation23. McNaughton, J.; Billard, F.; Revell, A. Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios. J. Fluids Struct. 2017, 47, 124–138. [CrossRef]
dc.relation24. Ghasemian, M.; Najafian Ashrafi, Z.; Sedaghat, A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 2017, 149, 87–100. [CrossRef]
dc.relation25. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef]
dc.relation26. Shamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of Vertical Axis Wind Turbines wakes. Energies 2014, 7, 890–912. [CrossRef]
dc.relation27. Shamsoddin, S.; Porté-Agel, F. A Large Eddy Simulation study of Vertical Axis Wind Turbines wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366. [CrossRef]
dc.relation28. Hezaveh, S.H.; Bou-Zeid, E.; Lohry, M.W.; Martinelli, L. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 2017, 20, 713–730. [CrossRef]
dc.relation29. Johansen, J.; Sørensen, N.N. Numerical analysis of winglets on wind turbine blades using CFD. In Proceedings of the EuropeanWind Energy Conference and Exhibition, Milan, Italy, 7–10 May 2007; pp. 1184–1189.
dc.relation30. Ferrer, E.; Munduate, X.Wind turbine blade tip comparison using CFD. J. Phys. Conf. Ser. 2007, 75, 012005. [CrossRef]
dc.relation31. Liang, Y.; Zhang, L.; Li, E.; Liu, X.; Yang, Y. Design Considerations of Rotor Configuration for Straight-Bladed Vertical Axis Wind Turbines. Adv. Mech. Eng. 2014, 6, 534906. [CrossRef]
dc.relation32. Zhu, B.; Sun, X.; Wang, Y.; Huang, D. Performance characteristics of a horizontal axis wind turbine with fusion winglet. Energy 2017, 120, 431–440. [CrossRef]
dc.relation33. Islam, M.; Fartaj, A.; Carriveau, R. Analysis of the Design Parameters related to a Fixed-pitch Straight Bladed Vertical Axis Wind Turbine. Wind Eng. 2008, 32, 491–507. [CrossRef]
dc.relation34. Sekiya, K.; Ueki, Y.; Nishizawa, Y.; Ushiyama, I.; Suzuki, M.; Taniguchi, H. A study on the improvement of the performance of straight bladed vertical axis wind turbine. In Proceedings of the Renewable Energy Conference 2010, Yokohama, Japan, 27 June–2 July 2010.
dc.relation35. Ahmed, N.A.; Netto, K.J. Computer Aided Design and Manufacture of a Novel Vertical Axis Wind Turbine Rotor withWinglet. Appl. Mech. Mater. 2014, 607, 581–587. [CrossRef]
dc.relation36. Amato, F.; Bedon, G.; Castelli, M.; Benini, E. Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT. Int. J. Aerosp. Mech. Eng. 2013, 7, 390–397.
dc.relation37. Li, Y.; Calisal, S.M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew. Energy 2010, 35, 2325–2334. [CrossRef]
dc.relation38. Heyson, H.H.; Riebe, G.D.; Fulton, C.L. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions; NASA Technical Paper 1020; NASA Langley Research Center: Hampton, VA, USA, 1977.
dc.relation39. Gupta, A.; Amano, R.S. CFD of wind turbine blade with winglets. In Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2012, Chicago, IL, USA, 12–15 August 2012.
dc.relation40. Mc Cormick, B.W. Aerodynamics, Aeronautics and Flight Mechanics, 2nd ed.; JohnWiley & Sons: New York, NY, USA, 1994; ISBN 978-0-47-157506-1.
dc.relation41. Masak, P.C. Design of Winglets for Sailplanes. Available online: http://soaringweb.org/Soaring_Index/1993/1993_issue.html (accessed on 10 September 2017).
dc.relation42. Rajendran, S. Design of Parametric Winglets and Wing Tip Devices: A Conceptual Design Approach. Master’s Thesis, Linkoping University, Linkoping, Sweden, 2012.
dc.relation43. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef]
dc.relation44. Langtry, R.B. A Correlation Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University Stuttgart, Stuttgart, Germany, 2006.
dc.relation45. Dai, Y.M.; Gardiner, N.; Sutton, R.; Dyson, P.K. Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 295–307. [CrossRef]
dc.relation46. Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind Turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]
dc.relation47. Yakhot, Y.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [CrossRef]
dc.relation48. Menter, F.J. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef]
dc.relation49. Launder, B.E.; Reece, G.J.; Rodi,W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef]
dc.relation50. Tobak, M.; Peak, D.J. Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 1982, 14, 61–85. [CrossRef]
dc.relation51. Dick, E.; Kubacki, S. Transition models for turbomachinery boundary layer flows: A review. Int. J. Turbomach. Propuls. Power 2017, 2, 4. [CrossRef]
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.titleNumerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución