dc.contributorRubio Wilson, Helmut Alexander
dc.creatorDíaz Bravo, Jesús Adrian
dc.creatorGuarnizo García, Luis Gonzalo
dc.date.accessioned2020-04-29T11:19:37Z
dc.date.accessioned2022-09-22T18:33:16Z
dc.date.available2020-04-29T11:19:37Z
dc.date.available2022-09-22T18:33:16Z
dc.date.created2020-04-29T11:19:37Z
dc.date.issued2020-03-16
dc.identifierhttp://red.uao.edu.co//handle/10614/12279
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3453914
dc.description.abstractEl presente trabajo aborda el diseño de un sistema distribuido de captura y visualización de espectro para la banda ISM de 2.4 GHz, con la capacidad de capturar el SSID, el RSSI y el canal de frecuencia de una red Wi-Fi para generar reportes gráficos que permitan observar el funcionamiento de la red y aplicar mejoras en caso de ser necesario. En primer lugar, para el desarrollo de este proyecto se diseñaron cuatro nodos sensores capaces de recolectar las variables de interés sobre la red. Luego, se implementó un servidor con el lenguaje de programación Python que permitiera la recepción de la información y su posterior visualización. Finalmente, se realizaron diferentes pruebas con el sistema de cuales se encontró principalmente que es posible a partir de la información presentada por los nodos en la interfaz de usuario; determinar si el lugar donde se encuentra ubicado el router es el más indicado y si el nivel de interferencia en el canal donde se configuró la red afecta de forma significativa la tasa de transmisión de datos
dc.description.abstractThis paper is about the design of a distributed spectrum capture and display system for the 2.4 GHz ISM band, with the ability to capture the SSID, RSSI and frequency channel of a Wi-Fi network to generate graphic reports that allow to observe the operation of the network and apply improvements if necessary. In the first place, four sensor nodes capable of collecting the variables of interest on the network were designed for the development of this project. Then, a server was implemented with the Python programming language that allowed the reception of the information and its subsequent visualization. Finally, they carried out different tests with the system of which it was found mainly that it is possible from the information presented by the nodes in the user interface to determine if the place where the router is located is the most indicated and if the level of channel interference where the network was configured significantly affects the data transmission rate
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Electrónica y Telecomunicaciones
dc.publisherDepartamento de Automática y Electrónica
dc.publisherFacultad de Ingeniería
dc.relation[1] D. Sánchez-Hernández and J. M. Catalá-Civera, “Future prosperity of industrial, scientific and medical (ISM) applications of microwaves,” in Advances in Microwave and Radio Frequency Processing - Report from the 8th International Conference on Microwave and High Frequency Heating, 2006, pp. 92–102. [2] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper - Cisco.” [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-vni/white-paper-c11-738429.html. [Accessed: 04-Feb2020]. [3] G. Shi and K. Li, Signal Interference in WiFi and ZigBee Networks. 2017. [4] INGNACIO ÁLVAREZ CALVO, “PÉRDIDAS DE INSERCIÓN EN DIFERENTES TIPOS DE MATERIALES Y ÁRBOLES,” ESCUELA POLITÉCNICA SUPERIOR, MADRID, 2013. [5] Z. Yang, Y. Wang, L. Zhang, and Y. Shen, “Indoor interference classification based on WiFi channel state information,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11342 LNCS, pp. 136–145. [6] “Por qué es lento el internet de Claro, ETB, Movistar y TigoUne.” [Online]. Available: https://www.dinero.com/empresas/articulo/por-que-es-lento-elinternet-de-claro-etb-movistar-y-tigoune/261711. [Accessed: 12-Feb-2020]. [7] M. Hamdan, M. Bani-Yaseen, and H. A. Shehadeh, “Multi-objective optimization modeling for the impacts of 2.4-GHz ISM band interference on IEEE 802.15.4 health sensors,” in Information Innovation Technology in Smart Cities, Springer Singapore, 2017, pp. 317–330. [8] D. Evans, “The Internet of Things: How the Next Evolution of the Internet Is Changing Everything,” 2011. [9] “Propagación de las ondas de radio (802.11) - CCM.” [Online]. Available: https://es.ccm.net/contents/819-propagacion-de-las-ondas-de-radio-802-11. [Accessed: 04-Feb-2020]. [10] W. Liu, D. Pareit, E. De Poorter, and I. Moerman, “Advanced spectrum sensing with parallel processing based on software-defined radio,” EURASIP J. Wirel. Commun. Netw., vol. 2013, no. 1, p. 228, Dec. 2013. [11] “Ettus Research - The leader in Software Defined Radio (SDR) | Ettus Research, a National Instruments Brand | The leader in Software Defined Radio (SDR).” [Online]. Available: https://www.ettus.com/. [Accessed: 10-Mar2020]. [12] T. Witono and Y. Dicky, “Optimization of WLAN deployment on classrooms environment using site survey,” in Proceedings of the 11th International Conference on Information and Communication Technology and System, ICTS 2017, 2018, vol. 2018-January, pp. 165–168. [13] E. Tanghe et al., “Range of an IEEE 802.11b/g system in industrial environments based on site survey measurements and propagation models,” in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI, 2008, pp. 1–4. [14] A. Srivastava, R. Vatti, V. Deshpande, J. Patil, and O. Nikte, “Coverage Improvement of IEEE 802.11n Based Campus Wide Wireless LANs,” in 2018 International Conference On Advances in Communication and Computing Technology, ICACCT 2018, 2018, pp. 126–129. [15] J. M. Pardo, G. A. Ramírez, and D. O. Rodríguez-Duarte, “Site Specific Indoor Propagation Assessment in a 802.11ac WLAN by Site Survey and RayTracing Simulation,” in Proceedings of the 2018 8th IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, APWC 2018, 2018, pp. 936–939. [16] K. EurAAP., F. Laurent, F. Vincent, J. Nicolas, and L. Joël, Proceedings of the Fourth European Conference on Antennas and Propagation CCIB, Barcelona, Spain, 12-16 April 2010. EurAAP, 2010. [17] A. Lafuente, “Introducción a los sistemas distribuidos Introducción a los Sistemas Distribuidos 1.2 Contenido.” [18] S. de Telecomunicaciones, “Sistema Distribuido de Captura y Visualización de Espectro para la Banda ISM de 2.4 GHz,” Sep. 2019. [19] “Free Wi-Fi heatmap coverage mapping software for homes and small offices - HeatMapper | Ekahau.” [Online]. Available: https://www.ekahau.com/products/heatmapper/overview/. [Accessed: 04- Feb-2020]. [20] R. A. Light, “Mosquitto: server and client implementation of the MQTT protocol.” [21] “MQTT Version 3.1.1.” [Online]. Available: http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. [Accessed: 02-Mar-2020]. [22] “MQTT.” [Online]. Available: http://mqtt.org/. [Accessed: 27-Feb-2020]. [23] “ISO - ISO / IEC 20922: 2016 - Tecnología de la información - Transporte de telemetría de mensajes en cola (MQTT) v3.1.1.” [Online]. Available: https://www.iso.org/standard/69466.html. [Accessed: 27-Feb-2020]. [24] N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon, and P. Khoenkaw, “MQTT-Topics Management System for sharing of Open Data,” in 2nd Joint International Conference on Digital Arts, Media and Technology 2017: Digital Economy for Sustainable Growth, ICDAMT 2017, 2017, pp. 62– 65. [25] T. Yokotani and Y. Sasaki, “Comparison with HTTP and MQTT on required network resources for IoT,” in ICCEREC 2016 - International Conference on Control, Electronics, Renewable Energy, and Communications 2016, Conference Proceedings, 2017, pp. 1–6. [26] Z. Feng, “Introduction of Wi-Fi standardization and Interoperability Certification Test,” 2017. [27] Z. Feng, “Introduction of Wi-Fi standardization and Interoperability Certification Test,” 2017. [28] “Different Wi-Fi Protocols and Data Rates.” [Online]. Available: https://www.intel.com/content/www/us/en/support/articles/000005725/networ k-and-i-o/wireless-networking.html. [Accessed: 04-Feb-2020]. [29] “Radio Regulations Articles.” 2016. [30] “Banda ISM | Aprendiendo Arduino.” [Online]. Available: https://aprendiendoarduino.wordpress.com/tag/banda-ism/. [Accessed: 04- Feb-2020]. [31] R. Cárdenas Castiblanco, “Uso de la banda de 2,4 GHz según la regulación colombiana ,” Tecnura , vol. 14. scieloco , pp. 75–88, 2010. [32] “Capítulo 2 Teoría sobre el ruido e interferencias.” [33] “Signal-to-Noise Ratio (SNR) and Wireless Signal Strength - Cisco Meraki.” [Online]. Available: https://documentation.meraki.com/MR/WiFi_Basics_and_Best_Practices/Sig nal-to-Noise_Ratio_(SNR)_and_Wireless_Signal_Strength. [Accessed: 04- Feb-2020]. [34] M. N. M. Reba, F. Rocadenbosch, M. Sicard, C. Muñoz, and S. Tomás, “Piecewise variance method for signal-to-noise ratio estimation in elastic/Raman lidar signals,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2007, pp. 3158–3161. [35] “Test of UltraFire BRC18650 4000 mAh (Brown-Gold).” [Online]. Available: https://lygte-info.dk/review/batteries2012/UltraFire BRC18650 4000 mAh (Brown-Gold) UK.html. [Accessed: 04-Mar-2020]. [36] “(No Title).” [Online]. Available: http://www.master.com.mx/img/fichas/agosto/AR-BATCHARGER.pdf. [Accessed: 04-Mar-2020]. [37] Espressif Systems, “ESP8266EX Datasheet,” 2019. [38] “MetaGeek - Equipping WiFi Heroes.” [Online]. Available: https://www.metageek.com/. [Accessed: 13-Feb-2020]. [39] “Arduino - WiFiStatus.” [Online]. Available: https://www.arduino.cc/en/Reference/WiFiStatus. [Accessed: 04-Feb-2020]. [40] “Google Image Result for http://www.prodesa.com/sites/default/files/ALAMEDA-APTO-50_final.png.” [Online]. Available: https://www.google.com/imgres?imgurl=http%3A%2F%2Fwww.prodesa.com %2Fsites%2Fdefault%2Ffiles%2FALAMEDA-APTO50_final.png&imgrefurl=http%3A%2F%2Fwww.prodesa.com%2Fproyectosdevivienda%2Fsoledad%2Fcaoba%2Fplanos&tbnid=TmG9kwBjJSvXuM&vet= 12ahUKEwigg7366YPoAhWj8VMKHdiFC7UQMygIegUIARDdAQ..i&docid=m cPKOqSOgeV3kM&w=1111&h=700&q=planos conjunto residencial caoba cali&ved=2ahUKEwigg7366YPoAhWj8VMKHdiFC7UQMygIegUIARDdAQ.[Accessed: 06-Mar-2020]. [41] “UniFi - UAP Antenna Radiation Patterns – Ubiquiti Networks Support and Help Center.” [Online]. Available: https://help.ubnt.com/hc/enus/articles/115005212927-UniFi-UAP-Antenna-Radiation-Patterns#lite overall. [Accessed: 06-Mar-2020]. [42] “Interferencia WiFi: Cómo detectarla con NetSpot.” [Online]. Available: https://www.netspotapp.com/es/wifi-interference.html. [Accessed: 06-Mar2020]. [43] A. Y. Hassan, “Increasing the symbol rate in QAM system using a new set of orthonormal basics functions,” J. Electr. Syst. Inf. Technol., vol. 5, no. 2, pp. 158–174, Sep. 2018. [44] T. Pattnayak and G. Thanikachalam, “AN91445 Antenna Design and RF Layout Guidelines Authors: Tapan Pattnayak, Guhapriyan Thanikachalam Associated Part Family: CY8C4XXX-BL, CYBL1XXXX, CY8C6XXXXX-BL.” [45] “2.4-GHz Inverted F Antenna Application Report,” 2007. [46] “Revolution WiFi MCS to SNR Levels | Wireless LAN Professionals.” [Online]. Available: https://www.wlanpros.com/resources/revolution-wifi-mcs-to-snr- 86 single-page/. [Accessed: 10-Mar-2020].
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.subjectIngeniería Electrónica y Telecomunicaciones
dc.subjectEspectro
dc.subjectWi-Fi
dc.subjectRSSI
dc.subjectInterferencia
dc.subjectTasa de transmisión
dc.subjectSistemas distribuidos
dc.subjectBanda ISM
dc.subjectISM band
dc.subjectSpectrum
dc.subjectInterference
dc.subjectTransmission rate
dc.titleSistema distribuido de captura y visualización de espectro para la banda ISM de 2.4 GHz
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución