dc.creatorPulgarin-Giraldo, Juan Diego
dc.creatorCastellanos Domínguez, German
dc.creatorInsuasti Ceballos, Hernan David
dc.creatorÁlvarez Meza, Andrés Marino
dc.creatorBouwmans, Thierry
dc.date.accessioned2019-10-17T13:19:33Z
dc.date.accessioned2022-09-22T18:30:08Z
dc.date.available2019-10-17T13:19:33Z
dc.date.available2022-09-22T18:30:08Z
dc.date.created2019-10-17T13:19:33Z
dc.date.issued2017-02-16
dc.identifier9783319597393
dc.identifier9783319522777
dc.identifierhttp://hdl.handle.net/10614/11223
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3452823
dc.description.abstractBackground modeling is a core task of video-based surveillance systems used to facilitate the online analysis of real-world scenes. Nowadays, GMM-based background modeling approaches are widely used, and several versions have been proposed to improve the original one proposed by Stauffer and Grimson. Nonetheless, the cost function employed to update the GMM weight parameters has not received major changes and is still set by means of a single binary reference, which mostly leads to noisy foreground masks when the ownership of a pixel to the background model is uncertain. To cope with this issue, we propose a cost function based on Euclidean divergence, providing nonlinear smoothness to the background modeling process. Achieved results over well-known datasets show that the proposed cost function supports the foreground/background discrimination, reducing the number of false positives, especially, in highly dynamical scenarios
dc.languageeng
dc.publisherSpringer, Cham
dc.relation290
dc.relation290
dc.relation282
dc.relation282
dc.relationPulgarin-Giraldo, J. D., Alvarez-Meza, A., Insuasti-Ceballos, D., Bouwmans, T., & Castellanos-Dominguez, G. (2016, November). GMM Background Modeling Using Divergence-Based Weight Updating. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2016. Lecture Notes in Computer Science(), vol 10125. Springer, Cham. https://doi.org/10.1007/978-3-319-52277-7_35
dc.relationProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
dc.relation1. Molina-Giraldo, S., ´Alvarez-Meza, A.M., Garc´ıa-´Alvarez, J.C., Castellanos-Dom´ınguez, C.G.: Video segmentation framework by dynamic background modelling. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 843–852. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41181-6 85
dc.relation2. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)
dc.relation3. Alvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Dominguez, G.: Background modeling using object-based selective updating and correntropy adaptation. Image Vis. Comput. 45, 22–36 (2016)
dc.relation4. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)
dc.relation5. Bouwmans, T., El Baf, F., Vachon, B., et al.: Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)
dc.relation6. Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 67–74, October 2003
dc.relation7. Principe, J.: Information Theoretic Learning. Renyi’s Entropy and Kernel Perspectives. Springer, New York (2010)
dc.relation8. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004
dc.relation9. Sobral, A.: BGSLibrary: an OpenCV C++ background subtraction library. In: IX Workshop de Vis˜ao Computacional (WVC 2013), Rio de Janeiro, Brazil, pp. 38–43, June 2013
dc.relationProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications : 21st Iberoamerican Congress, CIARP 2016, Lima, Peru, November 8–11, 2016, Proceedings. Páginas 282-290
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourcehttps://link.springer.com/chapter/10.1007/978-3-319-52277-7_35
dc.titleGMM background modeling using divergence-based weight updating
dc.typeCapítulo - Parte de Libro


Este ítem pertenece a la siguiente institución