dc.contributorIEEE Sensors Journal
dc.creatorMartin Vela, Javier Antonio
dc.creatorSierra Hernández, Juan Manuel
dc.creatorJauregui Vázquez, Daniel
dc.creatorEstudillo Ayala, Julián M.
dc.creatorHernández García, Juan C.
dc.creatorReyes Ayona, José Roberto
dc.creatorGarcia Mina, Diego Felipe
dc.creatorRojas Laguna, Roberto
dc.date.accessioned2022-01-17T18:22:43Z
dc.date.accessioned2022-09-22T18:30:04Z
dc.date.available2022-01-17T18:22:43Z
dc.date.available2022-09-22T18:30:04Z
dc.date.created2022-01-17T18:22:43Z
dc.date.issued2020-09-01
dc.identifier15581748
dc.identifierhttps://hdl.handle.net/10614/13547
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3452802
dc.description.abstractA curvature sensing Ytterbium-doped fiber ring,using a Thin Core Fiber Modal Interferometer (TCFMI) was experimentally demonstrated in this work. The TCFMI was implemented by fusion splicing a segment of a thin-core fiber, with a small core diameter, between two single-mode fiber sections. The proposed TCFMI functioned as a wavelengthselective filter in the fiber ring laser cavity. It was optimized to achieve a Side Mode Suppression Ratio (SMSR) of 35 dB; the laser emission produced a sensor resolution of 0.37 nm. The experimental results also showed a high curvature sensitivity close to −38.26 nm/m−1 from 0 m−1 to 0.399 m−1 curvature range. Here, the laser sensor exhibited a bandwidth of 16 nm in the 1072 nm to 1056 nm wavelength range. The fiber ring laser is a low-cost alternative for curvature sensing applications
dc.languageeng
dc.publisherIEEE Sensors Council
dc.relationVolumen 20, número 17 (2020)
dc.relation9870
dc.relation17
dc.relation9864
dc.relation20
dc.relationMartin Vela, J. A., Sierra Hernández, J. M., Jauregui Vazquez, D., Estudillo Ayala, J. M., Hernández García, J. C., Reyes Ayona, J. R., García Mina, D. F., Rojas Laguna, R. (2020). Highly sensitive fiber ring laser sensor for curvature using a modal interferometer. IEEE Sensors Journal. (Vol. 20 (17), pp. 9864-9870. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1
dc.relationIEEE Sensors Journal
dc.relation[1] X.-L. Wang, D.-R. Chen, X.-W. Ma, H.-T. Li, and S.-J. Luo, “A switchable and tunable ytterbium-doped fiber ring laser with a sagnac loop mirror,” Optoelectron. Lett., vol. 12, no. 4, pp. 261–263, Jul. 2016.
dc.relation[2] J. Cheng and S. Ruan, “Tunable and switchable multi-wavelength Erbium-doped photonic crystal fiber ring laser incorporating a length of highly nonlinear photonic crystal fiber,” Opt. Commun., vol. 284, no. 21, pp. 5185–5188, Oct. 2011.
dc.relation[3] Z.-R. Tong, M.-Y. Liu, Y. Cao, W.-H. Zhang, and X. Hao, “Switchable dual-wavelength erbium-doped fiber laser with tunable wavelength,” Optoelectron. Lett., vol. 11, no. 5, pp. 325–328, Sep. 2015.
dc.relation[4] H. Zou, S. Lou, G. Yin, and W. Su, “Switchable dual-wavelength PMEDF ring laser based on a novel filter,” IEEE Photon. Technol. Lett., vol. 25, no. 11, pp. 1003–1006, Jun. 2013.
dc.relation[5] J. F. Zhao, T. Q. Liao, C. Zhang, R. X. Zhang, C. Y. Miao, and Z. R. Tong, “Double Brillouin frequency spaced multiwavelength brillouin-erbium fiber laser with 50 nm tuning range,” Laser Phys., vol. 22, no. 9, pp. 1415–1418, Sep. 2012.
dc.relation[6] A. Y. Chamorovskiy, A. V. Marakulin, A. S. Kurkov, and O. G. Okhotnikov, “Tunable ho-doped soliton fiber laser mode-locked by carbon nanotube saturable absorber,” Laser Phys. Lett., vol. 9, no. 8, pp. 602–606, Aug. 2012.
dc.relation[7] S. A. Babin, S. I. Kablukov, and A. A. Vlasov, “Tunable fiber Bragg gratings for application in tunable fiber lasers,” Laser Phys., vol. 17, no. 11, pp. 1323–1326, Nov. 2007.
dc.relation[8] J. Liu, J. Yao, J. Yao, and T. Hin Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1020–1022, Apr. 2004.
dc.relation[9] X. Liu, S. Lou, Z. Tang, Y. Zhou, H. Jia, and P. Sun, “Tunable dual-wavelength ytterbium-doped fiber ring laser based on a sagnac interferometer,” Opt. Laser Technol., vol. 116, pp. 37–42, Aug. 2019.
dc.relation[10] J. A. Martin-Vela et al., “Curvature sensing setup based on a fiber laser and a long-period fiber grating,” IEEE Photon. Technol. Lett., vol. 31, no. 15, pp. 1265–1268, Aug. 1, 2019.
dc.relation[11] M. A. Gonzalez-Reyna et al., “Laser temperature sensor based on a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 27, no. 11, pp. 1141–1144, Jun. 2015.
dc.relation[12] R. A. Perez-Herrera et al., “L-band multiwavelength single-longitudinal mode fiber laser for sensing applications,” J. Lightw. Technol., vol. 30, no. 8, pp. 1173–1177, Apr. 2012.
dc.relation[13] H. Fu et al., “High-sensitivity Mach–Zehnder interferometric curvature fiber sensor based on thin-core fiber,” IEEE Sensors J., vol. 15, no. 1, pp. 520–525, Jan. 2015.
dc.relation[14] A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightw. Technol., vol. 19, no. 10, pp. 1495–1501, Oct. 2001.
dc.relation[15] D.W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode longperiod grating and an intrinsic Fabry–Pérot interferometer sensor,” Opt. Lett., vol. 30, no. 22, p. 3000, Nov. 2005.
dc.relation[16] B. Dong, J. Hao, and Z. Xu, “Temperature insensitive curvature measurement with a core-offset polarization maintaining photonic crystal fiber based interferometer,” Opt. Fiber Technol., vol. 17, no. 3, pp. 233–235, May 2011.
dc.relation[17] Y. Zhou et al., “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun., vol. 284, no. 24, pp. 5669–5672, Dec. 2011.
dc.relation[18] T. Lozano-Hernandez et al., “Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation,” Proc. SPIE, vol. 10516, Feb. 2018, Art. no. 105161L.
dc.relation[19] C. Li et al., “All-fiber multipath Machâ¬oeZehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A, Phys., vol. 248, pp. 148–154, Sep. 2016.
dc.relation[20] Y. Zhao, L. Cai, and X.-G. Li, “Temperature-insensitive optical fiber curvature sensor based on SMF-MMF-TCSMF-MMF-SMF structure,” IEEE Trans. Instrum. Meas., vol. 66, no. 1, pp. 141–147, Jan. 2017.
dc.relation[21] L. Ding, Y. Li, C. Zhou, M. Hu, Y. Xiong, and Z. Zeng, “In-fiber machzehnder interferometer based on three-core fiber for measurement of directional bending,” Sensors, vol. 19, no. 1, p. 205, 2019.
dc.relation[22] Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express, vol. 21, no. 20, pp. 23812–23821, 2013.
dc.relation[23] J.-J. Zhu, A. P. Zhang, T.-H. Xia, S. He, and W. Xue, “Fiber-optic hightemperature sensor based on thin-core fiber modal interferometer,” IEEE Sensors J., vol. 10, no. 9, pp. 1415–1418, Sep. 2010.
dc.relation[24] A. Bellemare et al., “A broadly tunable erbium-doped fiber ring laser: Experimentation and modeling,” IEEE J. Sel. Topics Quantum Electron., vol. 7, no. 1, pp. 22–29, Jan. 2001.
dc.relation[25] H. Taylor, “Bending effects in optical fiber,” J. Lightw. Technol., vol. LT- 2, no. 5, pp. 617–628, Oct. 1984.
dc.relation[26] S. Wang, W. G. Zhang, and L. Chen, “Bending vector sensor based on the multimode-2-core-multimode fiber structure,” IEEE Photon. Technol. Lett., vol. 28, no. 19, pp. 2066–2069, Jun. 2016.
dc.relation[27] G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez- Rios, A. Schülzgen, and R. A. Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett., vol. 40, no. 7, pp. 1468–1471, 2015.
dc.relation[28] Y. Gong, T. Zhao, and Y. J. Rao, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 679–681, Mar. 2011.
dc.relation[29] J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric vector bending sensor,” Opt. Lett., vol. 40, no. 13, pp. 3113–3116, Jul. 015.
dc.relation[30] L. L. Shi, T. Zhu, F. Y. Chen, M. Deng, and W. Huang, “Tunable filter based on a pair of special long-period fiber gratings and its application in fiber ring laser,” Laser Phys., vol. 22, no. 3, pp. 575–578, Mar. 2012.
dc.relation[31] A. G. Leal-Junior, L. M. Avellar, C. A. R. Diaz, A. Frizera, C. Marques, and M. J. Pontes, “Fabry–Pérot curvature sensor with cavities based on UV-curable resins: Design, analysis, and data integration approach,” IEEE Sensors J., vol. 19, no. 21, pp. 9798–9805, Nov. 2019.
dc.relation[32] S. Zhang et al., “A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG,” Sens. Actuators A, Phys., vol. 295, pp. 31–36, Aug. 2019.
dc.relation[33] Y.-X. Zhang et al., “V-shaped long-period fiber grating high-sensitive bending vector sensor,” IEEE Photon. Technol. Lett., vol. 30, no. 17, pp. 1531–1534, Sep. 2018.
dc.relation[34] J. M. Sierra-Hernandez et al., “Torsion sensing setup based on a three beam path mach-zehnder interferometer,” Microw. Opt. Technol. Lett., vol. 57, no. 8, pp. 1857–1860, Aug. 2015.
dc.relation[35] N. A. D. Huri et al., “Temperature sensor based on fluorescence measurement of cerium ytterbium doped fiber,” Opt. Spectrosc., vol. 111, no. 2, pp. 312–314, Aug. 2011.
dc.relation[36] S. Sidhishwari, M. Basu, and S. K. Ghorai, “A modal interference-based fiber optic sensor for dual parameter measurement using an artificial neural network,” Opt. Fiber Technol., vol. 50, pp. 216–224, Jul. 2019.
dc.relation[37] A. J. Thompson, M. Power, and G.-Z. Yang, “Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning,” Opt. Express, vol. 26, no. 11, p. 14186, May 2018.
dc.relation[38] X. Zhang, D. Liang, J. Zeng, and A. Asundi, “Genetic algorithm-support vector regression for high reliability SHM system based on FBG sensor network,” Opt. Lasers Eng., vol. 50, no. 2, pp. 148–153, Feb. 2012.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.sourcehttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9084143&tag=1
dc.titleHighly sensitive fiber ring laser sensor for curvature using a modal interferometer
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución