dc.creatorLain, Santiago
dc.creatorSommerfeld, Martin
dc.date.accessioned2020-02-14T21:13:26Z
dc.date.available2020-02-14T21:13:26Z
dc.date.created2020-02-14T21:13:26Z
dc.date.issued2011-02
dc.identifier0022-4456
dc.identifier0975-1084
dc.identifierhttp://hdl.handle.net/10614/11904
dc.description.abstractThis study presents further developments in Euler/Lagrange approach to calculate confined particle-laden flows in pneumatic conveying lines. Special emphasis is placed on influence of particle-wall collisions and wall roughness as well as inter particle collisions with possible agglomeration on developing two-phase flow structure and resulting process parameters. Model sand numerical method were validated based on pressure drop measured along a 6 m horizontal channel, and agreement was found to be excellent for different particles sizes, mass loading and wall roughness. In a horizontal pipe flow, due to wall roughness induced focussing of particle trajectories towards the core of pipe, a secondary flow in pipe cross-section develops. Additional pressure drop due to particles in pipe flow was higher than that in channel due to different wall collision behaviour
dc.languageeng
dc.publisherCSIR-NIScPR
dc.relation134
dc.relation129
dc.relation70
dc.relationLaín Beatove, S., Sommerfeld, M. (2011). Effect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts. Journal of Scientific and Industrial Research. 70(2),129-134. http://hdl.handle.net/10614/11904
dc.relationLain S, Modeling and Simulation of Bubble Induced Flows :[Universidad Autónoma de Occidente, Cali (Colombia)] 2007(in spanish) 91-93.
dc.relationSimonin O, 2000, Statistical and continuum modelling of turbulent reactive particulate flows: Part I. Theoretical derivationof dispersed phase Eulerian modelling from probability density function kinetic equation, Von Karman Institute for Fluid Mechanics Lecture Series, No. 2000-6 (Brussels, Belgium) 1-34.
dc.relationZaichik L I, Pershukov V A, Kozelev M V & Vinberg A A,Modeling of dynamics, heat transfer, and combustion in twophase turbulent flows: 1. Isothermal flows, Exp Therm Fluid Sci, 15 (1997) 291-310.
dc.relationLaín S, On Modeling and Numerical Computation of Industrial Disperse Two-Phase Flow with the Euler-Lagrange Approach (Shaker Verlag, Aachen, Germany) 2010, 11-25.
dc.relationSommerfeld M, Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/Lagrange-Verfahrens, Habilitationsschrift (Universität Erlangen-Nürnberg, Shaker Verlag, Aachen) 1996, 28-42.
dc.relationGouesbet G & Berlemont A, Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows, Progr Energy & Combust Sci, 25 (1999) 133-159.
dc.relationLain S & Sommerfeld M, Experimental and Numerical Study of the Motion of Non-Spherical Particles in Wall-Bounded Turbulent Flows [Universidad Autónoma de Occidente, Cali (Colombia)] 2008a, 25-34.
dc.relationSommerfeld M, Analysis of collision effects for turbulent gasparticle flow in a horizontal channel: Part I. Particle transport,Int J Multiphase Flow, 29 (2003) 675-699.
dc.relationLun C K K & Liu H S, Numerical simulation of dilute turbulent gas–solid flows in horizontal channels, Int J Multiphase Flow,23 (1997) 575-605.
dc.relationLaín S, Sommerfeld M & Kussin J, Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow, Int J Heat Fluid Flow, 23 (2002) 647-656.
dc.relationSommerfeld M & J. Kussin J, Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel, Powder Technol, 142 (2004) 180-192.
dc.relationLain S & Sommerfeld M, Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness, Powder Technol, 184 (2008b) 76-88.
dc.relationKohnen G, Rüger M & Sommerfeld M, Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases, in Numerical Methods in Multiphase Flows 1, FED-Vol 185, edited by C T Crowe et al (ASME Fluids Engineering Division Summer Meeting, Lake Tahoe,USA) 1994, 191-202.
dc.relationSommerfeld M, Kohnen G & Rüger M, 1993, Some open questions and inconsistencies of Lagrangian Particle dispersion models, in 9th Symp on Turbulent Shear Flows (Kyoto,Japan) 1993, Paper 15.1, 1-10.
dc.relationSommerfeld M & Huber N, Experimental analysis and modelling of particle-wall collisions, Int J Multiphase Flow, 25 (1999)1457-1489.
dc.relationSommerfeld M, Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence, Int J Multiphase Flows, 27 (2001) 1828-1858.
dc.relationJournal of Scientific and Industrial Research. Volumen 70, número 2, (febrero 2011); páginas 129-134
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleEffect of geometry on flow structure and pressure drop in pneumatic conveying of solids along horizontal ducts
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución