dc.contributorManzi Tarapués, Verónica
dc.creatorChantré Muñoz, Sara María
dc.date.accessioned2022-08-17T16:44:22Z
dc.date.accessioned2022-09-22T18:29:33Z
dc.date.available2022-08-17T16:44:22Z
dc.date.available2022-09-22T18:29:33Z
dc.date.created2022-08-17T16:44:22Z
dc.date.issued2022-08-12
dc.identifierhttps://hdl.handle.net/10614/14163
dc.identifierUniversidad Autónoma de Occidente
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3452616
dc.description.abstractEl sector de la construcción se ha caracterizado por la generación de diferentes impactos ambientales durante el desarrollo de sus actividades. Esto lo ha llevado a reconocer la necesidad de aplicar cambios en la manera como se diseñan, construyen y operan las edificaciones. Generando así que cada vez sea más común la implementación de construcciones que buscan ser sostenibles, pero para garantizar dicha sostenibilidad se requiere de herramientas que permitan evaluar el desempeño ambiental de la edificación. La metodología de análisis de ciclo de vida (ACV) ha sido ampliamente empleada para este propósito, debido a que permite el enfoque del ciclo de vida completo de los edificios. Para el cumplimiento de los objetivos del proyecto de investigación se formuló una metodología para evaluar el desempeño ambiental de prototipos de infraestructura básica multipropósito aplicando la técnica de análisis de ciclo de vida (ACV). Para la formulación de la metodología objeto de este proyecto se ejecutaron tres etapas, en el marco de las cuales se realizó una revisión bibliográfica de documentos técnicos y científicos para la identificación de las características del proceso de construcción de edificaciones, los materiales de construcción y su ciclo de vida. Se caracterizaron los impactos ambientales significativos que se generan durante el ciclo de vida de las edificaciones, estableciendo aquellos más relevantes para la evaluación de desempeño ambiental del prototipo. De la misma forma se caracterizaron los aspectos técnicos de los modelos, métodos e indicadores de categorías empleados para la evaluación de impactos ambientales de edificaciones usando el ACV. Posteriormente, a fin de definir los aspectos metodológicos que constituyen la metodología formulada, se seleccionaron las categorías de impacto a evaluar, así como los métodos y modelos a utilizar con base en la información recopilada y mediante la evaluación de criterios establecidos para dicha selección, usando listas de chequeo. Por otra parte, también se identificó la información de entrada requerida para la modelación de los impactos ambientales, aplicando la metodología formulada y las fuentes para su obtención, entre ellas: las cantidades de obra definidas en la memoria técnica del diseño del prototipo e información técnica y operativa sobre maquinarias, equipos y procesos de transporte de materiales al sitio de obra obtenida de bases de datos especializadas, seleccionadas a partir de experiencia técnica y operativa documentada en trabajos similares en el contexto colombiano. De esta manera, la metodología para la evaluación del desempeño ambiental del prototipo diseñado específica las elecciones metodológicas respecto a modelos, métodos, categorías de impactos, bases de datos a emplear, identificación de información requerida, de fuentes de información y otros datos relevantes para su aplicación.
dc.description.abstractThe construction sector has been characterized by the generation of different environmental impacts during the development of its activities. This has led it to recognize the need to apply changes in the way buildings are designed, constructed and operated. As a result, the implementation of sustainable construction is becoming more and more common, but in order to guarantee this sustainability, tools are required to evaluate the environmental performance of the building. The life cycle analysis (LCA) methodology has been widely used for this purpose, because it allows the approach of the complete life cycle of buildings. In order to fulfill the objectives of the research project, a methodology was formulated to evaluate the environmental performance of multipurpose basic infrastructure prototypes by applying the life cycle analysis (LCA) technique. For the formulation of the methodology of this project, three stages were carried out, in the framework of which a bibliographic review of technical and scientific documents was carried out to identify the characteristics of the construction process of buildings, construction materials and their life cycle. The significant environmental impacts generated during the life cycle of the buildings were characterized, establishing the most relevant ones for the environmental performance evaluation of the prototype. In the same way, the technical aspects of the models, methods and category indicators used for the evaluation of environmental impacts of buildings using the LCA were characterized. Subsequently, in order to define the methodological aspects that constitute the formulated methodology, the impact categories to be evaluated were selected, as well as the methods and models to be used based on the information gathered and through the evaluation of criteria established for such selection, using checklists. On the other hand, the input information required for the modeling of environmental impacts was also identified, applying the methodology formulated and the sources for obtaining it, among them: the quantities of work defined in the technical report of the prototype design and technical and operational information on machinery, equipment and processes for transporting materials to the work site obtained from specialized databases, selected from technical and operational experience documented in similar works in the Colombian context. Thus, the methodology for the evaluation of the environmental performance of the designed prototype specifies the methodological choices regarding models, methods, impact categories, databases to be used, identification of required information, sources of information and other relevant data for its application
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Ambiental
dc.publisherDepartamento de Energética y Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherCali
dc.relationChanatré Muñoz, S. M. (2022). Metodología para la evaluación del desempeño ambiental de un prototipo de infraestructura básica multipropósito durante su ciclo de vida. (Pasantía de investigación). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14163
dc.relationAdalberth, K., Almgren, A. S., y Petersen, E. H. (2001). Life cycle assessment of four multi-family buildings. International Journal of Low Energy and Sustainable Buildings, 2, 1–21. https://www.scopus.com/record/display.uri?eid=2-s2.0-33645665629&origin=inward&txGid=47eaa771e3a90489907f5306204a1e0f&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
dc.relationAlaloul, W. S., Musarat, M. A., Rabbani, M. B. A., Iqbal, Q., Maqsoom, A., y Farooq, W. (2021). Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution. Sustainability 2021, Vol. 13, Page 5012, 13(9), 5012. https://doi.org/10.3390/SU13095012
dc.relationAmetepey, S. O., y Ansah, S. K. (2015). Impacts of Construction Activities on the Environment : the Case of Ghana. Academia, 5(3).
dc.relationAmpofo-Anti, N. (2008). Life cycle assessment: applications and implications for the greening of the South African construction sector. Council for Scientific and Industrial Research, South Africa.
dc.relationAnand, C. K., y Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. In Renewable and Sustainable Energy Reviews (Vol. 67). https://doi.org/10.1016/j.rser.2016.09.058
dc.relationBhochhibhoya, S., Zanetti, M., Pierobon, F., Gatto, P., Maskey, R. K., y Cavalli, R. (2017). The global warming potential of building materials: An application of life cycle analysis in Nepal. Mountain Research and Development, 37(1). https://doi.org/10.1659/MRD-JOURNAL-D-15-00043.1
dc.relationBicalho, F. W. (2021). Infraestructura resiliente. Un imperativo para el desarrollo sostenible en América Latina y el Caribe. Comisión Económica Para América Latina y El Caribe (CEPAL), 160. www.cepal.org/apps
dc.relationBlengini, G. A. (2009). Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Building and Environment, 44(2), 319–330. https://doi.org/10.1016/J.BUILDENV.2008.03.007
dc.relationCao, X., Li, X., Zhu, Y., y Zhang, Z. (2015). A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of Cleaner Production, 109, 131–143. https://doi.org/10.1016/J.JCLEPRO.2015.04.120
dc.relationCarabaño, R., Hernando, S. M., Ruiz, D., y Bedoya, C. (2017). Life cycle assessment (LCA) of building materials for the evaluation of building sustainability: The case of thermal insulation materials. Revista de La Construccion, 16(1). https://doi.org/10.7764/RDLC.16.1.22
dc.relationDahlstrøm, O., Sørnes, K., Eriksen, S. T., y Hertwich, E. G. (2012). Life cycle assessment of a single-family residence built to either conventional- or passive house standard. Energy and Buildings, 54, 470–479. https://doi.org/10.1016/J.ENBUILD.2012.07.029
dc.relationDANE. (2020). Boletin Técnico Indicadores Económicos al Rededor de la Construcción (IEAC). Boletín Técnico, 1–30.
dc.relationDixit, M. K., Culp, C. H., y Fernández-Solís, J. L. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews, 21, 153–164. https://doi.org/10.1016/J.RSER.2012.12.037
dc.relationDNP. (2018). CONPES 3919. Consejo Nacional de Política Económica y Social.
dc.relationDownton, P. (2011). Building environmental performance assessment: Methods and tools. Environment Design Guide, November.
dc.relationEmami, N., Heinonen, J., Marteinsson, B., Säynäjoki, A., Junnonen, J. M., Laine, J., y Junnila, S. (2019). A life cycle assessment of two residential buildings using two different LCA database-software combinations: Recognizing uniformities and inconsistencies. Buildings, 9(1). https://doi.org/10.3390/buildings9010020
dc.relationEPA. (2019, May). Green Buildings | US EPA. https://www.epa.gov/land-revitalization/green-buildings
dc.relationEuropean Commission. (2010). ILCD Handbook: Analysing of existing Environmental Impact Assessment methodologies for use in Life Cycle Assessment. Background Document - First Edition. Publications Office of the European Union, 115.
dc.relationEuropean Union. (2011). ILCD Handbook: Framework and requirements for LCIA models and indicators. In International Reference Life Cycle Data System (ILCD) Handbook.
dc.relationEuropean Commission. (2013). Recomendación de la comisión de 9 de abril de 2013 sobre el uso de métodos comunes para medir y comunicar el comportamiento ambiental de los productos y las organizaciones a lo largo de su ciclo de vida. 2010. https://op.europa.eu/en/publication-detail/-/publication/93cb8358-b80d-11e2-ab01-01aa75ed71a1/language-es
dc.relationFrança, W. T., Barros, M. V., Salvador, R., de Francisco, A. C., Moreira, M. T., y Piekarski, C. M. (2021). Integrating life cycle assessment and life cycle cost: a review of environmental-economic studies. In International Journal of Life Cycle Assessment (Vol. 26, Issue 2). https://doi.org/10.1007/s11367-020-01857-y
dc.relationGerilla, G. P., Teknomo, K., y Hokao, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7). https://doi.org/10.1016/j.buildenv.2006.07.021
dc.relationGerran J. Lankhorst, Janko Arts, Karel C. Terwel, y Henk M. Jonkers. (2019). Life Cycle Analysis: Load-Bearing Structures Of High-Rise Buildings in Western Europe. CTBUH Journa, 3, 28–35. https://www.jstor.org.vlib.interchange.at/stable/26768114
dc.relationGuinee, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7(5). https://doi.org/10.1007/bf02978897
dc.relationHäfliger, I. F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., y Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156. https://doi.org/10.1016/j.jclepro.2017.04.052
dc.relationHasik, V., Escott, E., Bates, R., Carlisle, S., Faircloth, B., y Bilec, M. M. (2019). Comparative whole-building life cycle assessment of renovation and new construction. Building and Environment, 161, 106218. https://doi.org/10.1016/J.BUILDENV.2019.106218
dc.relationHasik, V., Ororbia, M., Warn, G. P., y Bilec, M. M. (2019). Whole building life cycle environmental impacts and costs: A sensitivity study of design and service decisions. Building and Environment, 163. https://doi.org/10.1016/j.buildenv.2019.106316
dc.relationHeeren, N., Mutel, C. L., Steubing, B., Ostermeyer, Y., Wallbaum, H., y Hellweg, S. (2015). Environmental Impact of Buildings - What Matters? Environmental Science and Technology, 49(16), 9832–9841. https://doi.org/10.1021/ACS.EST.5B01735/SUPPL_FILE/ES5B01735_SI_001.PDF
dc.relationHeinonen, J., Säynäjoki, A., Junnonen, J. M., Pöyry, A., y Junnila, S. (2016). Pre-use phase LCA of a multi-story residential building: Can greenhouse gas emissions be used as a more general environmental performance indicator? Building and Environment, 95. https://doi.org/10.1016/j.buildenv.2015.09.006
dc.relationHill, C., y Norton, A. (2018). LCA database of environmental impact to inform material selection process (Issue 761072).
dc.relationHuang, B., Xing, K., y Pullen, S. (2017). Energy and carbon performance evaluation for buildings and urban precincts: review and a new modelling concept. Journal of Cleaner Production, 163. https://doi.org/10.1016/j.jclepro.2015.12.008
dc.relationIslam, H., Jollands, M., y Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings—A review. Renewable and Sustainable Energy Reviews, 42, 129–140. https://doi.org/10.1016/J.RSER.2014.10.006
dc.relationICONTEC. (2007). Norma Técnica Colombiana NTC- ISO 14040. Gestión ambiental - Evaluación del ciclo de vida - Principios y marco de referencia. In ICONTEC (Ed.), Instituto Colombiano de Normas Técnicas y Certificación (2.a ed).
dc.relationICONTEC. (2021a). Norma Técnica Colombiana NTC-ISO 14044. Gestión ambiental. Análisis de ciclo de vida. Requisitos y directrices. Requisitos del ciclo de vida. In ICONTEC (Ed.), Instituto Colombiano de Normas Técnicas y Certificación (2.a ed).
dc.relationICONTEC. (2021b). NTC- ISO 21930 -Sostenibilidad en edificios y obras de ingeniería civil. Reglas básicas para las declaraciones ambientales de productos y servicios de construcción. In ICONTEC (Ed.), Instituto Colombiano de Normas Técnicas y Certificación.
dc.relationIslam, H., Jollands, M., y Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings—A review. Renewable and Sustainable Energy Reviews, 42, 129–140. https://doi.org/10.1016/J.RSER.2014.10.006
dc.relationItskos, G., Nikolopoulos, N., Kourkoumpas, D. S., Koutsianos, A., Violidakis, I., Drosatos, P., y Grammelis, P. (2016, January 1). Energy and the Environment. Environment and Development: Basic Principles, Human Activities, and Environmental Implications, 363–452. https://doi.org/10.1016/B978-0-444-62733-9.00006-X
dc.relationKaczmarczyk, M. (2019). Methodology and impact categories of environmental life cycle assessment in geothermal energy sector. E3S Web of Conferences, 100, 32. https://doi.org/10.1051/e3sconf/201910000032
dc.relationKhasreen, M. M., Banfill, P. F. G., y Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674–701. https://doi.org/10.3390/SU1030674
dc.relationLasvaux, S., Habert, G., Peuportier, B., y Chevalier, J. (2015). Comparison of generic and product-specific Life Cycle Assessment databases: application to construction materials used in building LCA studies. International Journal of Life Cycle Assessment, 20(11). https://doi.org/10.1007/s11367-015-0938-z
dc.relationLavagna, M., Baldassarri, C., Campioli, A., Giorgi, S., Dalla Valle, A., Castellani, V., y Sala, S. (2018). Benchmarks for environmental impact of housing in Europe: Definition of archetypes and LCA of the residential building stock. Building and Environment, 145, 260–275. https://doi.org/10.1016/J.BUILDENV.2018.09.008
dc.relationLawson, R. M., Ogden, R., y Goodier, C. I. (Chris I. (2014). Design in modular construction (1st ed.). CRC Press.
dc.relationLlantoy, N., Chàfer, M., y Cabeza, L. F. (2020). A comparative life cycle assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. In Energy and Buildings (Vol. 225). https://doi.org/10.1016/j.enbuild.2020.110323
dc.relationLu, H. R., El Hanandeh, A., y Gilbert, B. P. (2017). A comparative life cycle study of alternative materials for Australian multi-storey apartment building frame constructions: Environmental and economic perspective. Journal of Cleaner Production, 166, 458–473. https://doi.org/10.1016/J.JCLEPRO.2017.08.065
dc.relationLützkendorf, T., Foliente, G., Balouktsi, M., y Wiberg, A. H. (2015). Net-zero buildings: Incorporating embodied impacts. In Building Research and Information (Vol. 43, Issue 1). https://doi.org/10.1080/09613218.2014.935575
dc.relationMoffit, A. (2012). Hierro Y Acero. In INSST (Ed.), enciclopedia de salud y seguridad en el trabajo en la oit (pp. 1–10).
dc.relationMoreno, H. S. (2011). Aplicación de la información de la vida útil en la planeación y diseño de proyectos de edificación. Acta Universitaria, 21, 37–42. https://doi.org/10.15174/au.2011.35
dc.relationOladazimi, A., Mansour, S., y Hosseinijou, S. A. (2020). Comparative Life Cycle Assessment of Steel and Concrete Construction Frames: A Case Study of Two Residential Buildings in Iran. Buildings 2020, Vol. 10, Page 54, 10(3), 54. https://doi.org/10.3390/BUILDINGS10030054
dc.relationONU. (2018, May 16). 2018 Revision of World Urbanization Prospects | Multimedia Library - United Nations Department of Economic and Social Affairs. https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html
dc.relationOrtiz-Rodríguez, O., Castells, F., y Sonnemann, G. (2010). Life cycle assessment of two dwellings: One in Spain, a developed country, and one in Colombia, a country under development. Science of the Total Environment, 408(12), 2435–2443. https://doi.org/10.1016/J.SCITOTENV.2010.02.021
dc.relationPassuello, A. C. B., Oliveira, A. F. de, Costa, E. B. da, y Kirchheim, A. P. (2014). Aplicação da Avaliação do Ciclo de Vida na análise de impactos ambientais de materiais de construção inovadores: estudo de caso da pegada de carbono de clínqueres alternativos. Ambiente Construído, 14(4). https://doi.org/10.1590/s1678-86212014000400002
dc.relationPetkar, S. (2014). Environmental Impact Of Construction Materials And Practices. https://doi.org/10.13140/RG.2.1.2581.0001
dc.relationPetrovic, B., Myhren, J. A., Zhang, X., Wallhagen, M., y Eriksson, O. (2019). Life cycle assessment of building materials for a single-family house in Sweden. Energy Procedia, 158. https://doi.org/10.1016/j.egypro.2019.01.913
dc.relationRevuelta, M. B. (2021). Construction Materials: Geology, Production and Applications. Springer International Publishing. https://books.google.com.co/books?id=ZyghEAAAQBAJ
dc.relationRodríguez, B. (2003). El análisis del ciclo de vida y la gestión ambiental. Boletin IiE, 91–97.
dc.relationRozas, P., y Sánchez, R. (2004). Desarrollo de infraestructura y crecimiento económico: revisión conceptual. CEPAL - SERIE Recursos Naturales e Infraestructura, 75.
dc.relationRuggirello, H. (2011). El Sector de la Construcción en perspectiva :Internacionalización e impacto en el mercado de trabajo (G. Pérez (ed.); 1o edición). Aulas y Andamios. http://biblioteca.clacso.edu.ar/Argentina/fundacion-uocra/20171110053107/pdf_465.pdf
dc.relationSarmiento-Rojas, J.-A., Gonzalez-Sanabria, J. S., Hernández Carrillo, C. G., Sarmiento-Rojas, J. A., González-Sanabria, J.-S., y Hernández-Carrillo, C. G. (2020). Analysis of the impact of the construction sector on Colombian economy. Tecnura, 24(66), 109–118. https://doi.org/10.14483/22487638.16194
dc.relationSartori, T., Drogemuller, R., Omrani, S., y Lamari, F. (2021). A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS). Journal of Building Engineering, 38, 102180. https://doi.org/10.1016/J.JOBE.2021.102180
dc.relationSchmid, A. G. (2008). Diferenciación espacial en la metodología de Análisis del Ciclo de Vida: desarrollo de factores regionales para eutrofización acuática y terrestre. A. Gallego. https://books.google.com.co/books?id=QVtePqiR9DkC
dc.relationSeppala, J., Risbey, J., Meilinger, S., Norris, G., Lindfors, G., y Goedkoop, M. (2001). Best available practice in life cycle assessment of climate change, stratospheric ozone depletion, photo-oxidant formation, acidification, and eutrophication-Backgrounds on general issues. https://www.researchgate.net/publication/27452523_Best_available_practice_in_life_cycle_assessment_of_climate_change_stratospheric_ozone_depletion_photo-oxidant_formation_acidification_and_eutrophication-Backgrounds_on_general_issues
dc.relationSilvestre, J., Silva, A., y De Brito, J. (2015). Uncertainty modelling of service life and environmental performance to reduce risk in building design decisions. Vilnius Gediminas Technical University, 21(3), 308–322. https://doi.org/10.3846/13923730.2014.890649
dc.relationSrinivasan, R. S., Ingwersen, W., Trucco, C., Ries, R., y Campbell, D. (2014). Comparison of energy-based indicators used in life cycle assessment tools for buildings. Building and Environment, 79, 138–151. https://doi.org/10.1016/J.BUILDENV.2014.05.006
dc.relationSoares, N., Bastos, J., Pereira, L. D., Soares, A., Amaral, A. R., Asadi, E., Rodrigues, E., Lamas, F. B., Monteiro, H., Lopes, M. A. R., y Gaspar, A. R. (2017). A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. In Renewable and Sustainable Energy Reviews (Vol. 77). https://doi.org/10.1016/j.rser.2017.04.027
dc.relationSolaimani, S., y Sedighi, M. (2020). Toward a holistic view on lean sustainable construction: A literature review. Journal of Cleaner Production, 248, 119213. https://doi.org/10.1016/J.JCLEPRO.2019.119213
dc.relationStafford, F. N., Raupp-Pereira, F., Labrincha, J. A., y Hotza, D. (2016). Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137. https://doi.org/10.1016/j.jclepro.2016.07.050
dc.relationThai, H. T., Ngo, T., y Uy, B. (2020). A review on modular construction for high-rise buildings. Structures, 28, 1265–1290. https://doi.org/10.1016/J.ISTRUC.2020.09.070
dc.relationThiers, S., y Peuportier, B. (2012). Energy and environmental assessment of two high energy performance residential buildings. Building and Environment, 51, 276–284. https://doi.org/10.1016/J.BUILDENV.2011.11.018
dc.relationTudeau, J. (2019). MATERIALS. In Building in Assyria: A Philological Perspective (1st ed., pp. 59–74). Harrassowitz Verlag. https://doi.org/10.2307/j.ctv1453khg.8
dc.relationUNDP, ISDR, y IRP. (2013). Documento de apoyo, infraestructura. Documento de Apoyo In raestructura, 48. https://eird.org/pr14/cd/documentos/espanol/Publicacionesrelevantes/Recuperacion/6-Infraestructura.pdf
dc.relationUNEP. (2021). 2021 Global Status Report for Buildings and Construction: Towards a Zero‑emission, Efficient and Resilient Buildings and Construction Sector. https://globalabc.org/sites/default/files/2021-10/GABC_Buildings-GSR-2021_BOOK.pdf
dc.relationUniversidad San Buenaventura de Cali, (2022). Desarrollo arquitectónico constructivo de la célula. Facultad De Arquitectura, Arte Y Diseño.
dc.relationVieira, D. R., Calmon, J. L., y Coelho, F. Z. (2016). Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Construction and Building Materials, 124, 656–666. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.125
dc.relationWiche, P., Rodríguez, B., y Granato, D. (2020). Estado del Arte de Huella de Carbono para Edificaciones: Resumen para Tomadores de Decisiones. Instituto de la Construcción. https://www.minvu.gob.cl/wp-content/uploads/2021/04/ESTUDIO-HUELLA-DE-CARBONO.pdf
dc.relationXing, S., Xu, Z., y Jun, G. (2008). Inventory analysis of LCA on steel- and concrete-construction office buildings. Energy and Buildings, 40(7), 1188–1193. https://doi.org/10.1016/J.ENBUILD.2007.10.016
dc.relationZabalza Bribián, I., y Aranda Usón, A. (2011). Ecodiseño en la edificación (Serie Eficiencia Energética). Prensas de la Universidad de Zaragoza. https://books.google.com.co/books?id=JIX1DAAAQBAJ&pg=PA50&dq=etapas+de+ciclo+de+vida+de+edificios&hl=es&sa=X&ved=2ahUKEwjSkdHj5dL1AhUcQjABHTC4BK0Q6AF6BAgCEAI#v=onepage&q=etapas de ciclo de vida de edificios&f=true
dc.relationZabalza, I., Scarpellini, S., Aranda, A., Llera, E., y Jáñez, A. (2013). Use of LCA as a tool for building ecodesign. A case study of a low energy building in Spain. Energies, 6(8), 3901–3921. https://doi.org/10.3390/EN6083901
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2022
dc.subjectIngeniería Ambiental
dc.titleMetodología para la evaluación del desempeño ambiental de un prototipo de infraestructura básica multipropósito durante su ciclo de vida
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución