dc.contributor | MDPI | |
dc.creator | Laín Beatove, Santiago | |
dc.creator | Cortés, Pablo | |
dc.creator | López, Omar Darío | |
dc.date.accessioned | 2021-09-17T13:50:52Z | |
dc.date.accessioned | 2022-09-22T18:29:16Z | |
dc.date.available | 2021-09-17T13:50:52Z | |
dc.date.available | 2022-09-22T18:29:16Z | |
dc.date.created | 2021-09-17T13:50:52Z | |
dc.date.issued | 2020-03-03 | |
dc.identifier | https://hdl.handle.net/10614/13218 | |
dc.identifier | https://doi.org/10.3390/es13051137 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3452493 | |
dc.description.abstract | In this study, three-dimensional transient numerical simulations of the flow around a cross flow water turbine of the type H-Darrieus are performed. The hydrodynamic characteristics and performance of the turbine are investigated by means of a time-accurate unsteady Reynolds-averaged Navier–Stokes (URANS) commercial solver (ANSYS-Fluent v. 19) where the time dependent rotor-stator interaction is described by the sliding mesh approach. The transition shear stress transport turbulence model has been employed to represent the turbulent dynamics of the underlying flow. Computations are validated versus previous experimental work in terms of the turbine efficiency curve showing good agreement between numerical and experimental values. The behavior of the power and force coefficients as a function of turbine angular speed is analyzed. Moreover, visualizations and analyses of the instantaneous vorticity iso-surfaces developing at different blade rotational velocities are presented including a few movies as additional material. Finally, the fluid variables fields are averaged along a turbine revolution and are compared with the steady predictions of simplified steady approaches based on the blade element momentum theory and the double multiple streamtube method (BEM-DMS) | |
dc.language | eng | |
dc.publisher | Energies | |
dc.publisher | Suiza | |
dc.relation | Volumen 13, número 5 (2020) | |
dc.relation | 27 | |
dc.relation | 5 | |
dc.relation | 1 | |
dc.relation | 13 | |
dc.relation | Lain, S., Cortés P., López O. D. (2020). Numerical simulation of the flow around a straight blade darrieus water turbine. Revista Energies. Vol 13 (5), 1-27. DOI:10.3390/en13051137 | |
dc.relation | Energies | |
dc.relation | Dai, Y.M.; Lam,W. Numerical study of straight-bladed Darrieus-type tidal turbine. Proc. Inst. Civ. Eng. Energy 2009, 162, 67–76. | |
dc.relation | Dai, Y.M.; Gardiner, N.; Sutton, R.; Dyson, P.K. Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 295–307. | |
dc.relation | López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross FlowWater Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. | |
dc.relation | Trivedi, C.; Cervantes, M.J.; Dahlhaug, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74. | |
dc.relation | Trivedi, C.; Cervantes, M.J.; Gandhi, B.K. Investigation of a high head Francis turbine at runaway operating conditions. Energies 2016, 9, 149. | |
dc.relation | Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Rev. Fac. Ing. Univ. Antioq. 2010, 51, 24–33. | |
dc.relation | Göz, M.F.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles
and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [ | |
dc.relation | Jin, X.; Zhao, G.; Gao, K.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain. Energy Rev. 2015, 42, 212–225. | |
dc.relation | Ferreira, C.S. The Near Wake of the VAWT, 2D and 3D Views of the VAWT Aerodynamics. Ph.D. Thesis, Technical University of Lisbon, Lisbon, Portugal, 2009. | |
dc.relation | Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422. | |
dc.relation | Hill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus turbines: The physics of self-starting. Proc. Inst. Mech. Eng. Part A 2008, 223, 21–29. | |
dc.relation | Untaroiu, A.; Wood, H.G.; Allaire, P.E.; Ribando, R.J. Investigation of Self-Sarting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach. J. Solar Energy Eng. 2011, 133, 041010. | |
dc.relation | Castelli, M.R.; Benini, E. E ect of Blade Inclination Angle of a DarrieusWind Turbine. J. Turbomach. 2012, 134, 031016 | |
dc.relation | Siddiqui, M.S.; Durrani, N.; Akhtar, I. Quantification of the e ects of geometric approximations on the performance of a vertical axis wind turbine. Renew. Energy 2015, 74, 661–670. | |
dc.relation | Ghasemian, M.; Najafian Ashrafi, Z.; Sedaghat, A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 2017, 149, 87–100. | |
dc.relation | Laín, S.; Osorio, C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. J. Sci. Ind. Res. 2010, 69, 906–912. | |
dc.relation | Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. | |
dc.relation | Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind Turbines. Renew. Energy 2016, 85, 419–435. | |
dc.relation | Amet, E. Simulation Numérique d’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2009. | |
dc.relation | Hall, T.J. Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine. Master’s Thesis, University of Washington,Washington, DC, USA, 2012. | |
dc.relation | Menter, F.J. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 269–289. | |
dc.relation | Pellone, C.; Maître, T.; Amet, E. 3D RANS modeling of a cross flow water turbine. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Heidelberg, Germany, 2014; pp. 405–418. ISBN 978-981-287-615-7. | |
dc.relation | Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935. | |
dc.relation | Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. | |
dc.relation | López, O.D.; Quiñones, J.J.; Laín, S. RANS and Hybrid RANS-LES Simulations of an H-Type Darrieus Vertical AxisWater Turbine. Energies 2018, 11, 2348. | |
dc.relation | Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the e ect of winglets on the performance of a straight blade Darrieus water turbine. Energies 2018, 11, 297. | |
dc.relation | Mannion, B.; Leen, S.; Nash, S. A two and three-dimensional CFD investigation into performance prediction and wake characterisation of a vertical axis turbine. J. Renew. Sustain. Energy 2018, 10, 034503. | |
dc.relation | Bachant, P.; Wosnik, M. E ects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies 2016, 9, 73. | |
dc.relation | Al-Dabbagh, M.; Yuce, M. Numerical evaluation of helical hydrokinetic turbines with di erent solidities under di erent flow conditions. Int. J. Environ. Sci. Technol. 2019, 16, 4001–4012. | |
dc.relation | Yang, B.; Shu, X. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. J. Ocean Eng. 2012, 42, 35–46. | |
dc.relation | Guillaud, N.; Balarac, G.; Goncalves, E.; Zanette, J. Large Eddy Simulations on Vertical Axis Hydrokinetic Turbines -Power coe cient analysis for various solidities. Renew. Energy 2020, 147, 473–486. | |
dc.relation | Bayram Mohamed, A.; Bear, C.; Bear, M.; Korobenko, A. Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput. Fluids 2020, 200, 104432. | |
dc.relation | Shamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of Vertical Axis Wind Turbines wakes. Energies 2014, 7, 890–912. | |
dc.relation | Shamsoddin, S.; Porté-Agel, F. A Large Eddy Simulation study of Vertical Axis Wind Turbines wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366. | |
dc.relation | Hezaveh, S.H.; Bou-Zeid, E.; Lohry, M.W.; Martinelli, L. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 2017, 20, 713–730. | |
dc.relation | Guo, Q.; Zhou, L.J.; Xiao, Y.X.; Wang, Z.W. Flow field characteristics analysis of a horizontal axis marine current turbine by large eddy simulation. IOP Conf. Ser. Matter Sci. Eng. 2013, 52, 052017. | |
dc.relation | Bangga, G.; Dessoky, A.; Lutz, T.; Krämer, E. Improved double-multiple-streamtube approach for H-Darrieus vertical axis wind turbine computations. Energy 2019, 182, 673–688. | |
dc.relation | McLaren, K.; Tullis, S.; Ziada, S. Computational fluid dynamics simulation of the aerodynamics of a high solidity, small scale vertical axis wind turbine. Wind Energy 2012, 15, 349–361. | |
dc.relation | McNaughton, J.; Billard, F.; Revell, A. Turbulence modelling of low Reynolds number flow e ects around a vertical axis turbine at a range of tip-speed ratios. J. Fluids Struct. 2014, 47, 124–138. | |
dc.relation | Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. | |
dc.relation | Langtry, R.B. A Correlation Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006. | |
dc.relation | Delafin, P.L.; Nishino, T.; Kolios, A.; Wang, L. Comparison of low-order aerodynamic models and RANS CFD for full scale vertical axis wind turbines. Renew. Energy 2017, 109, 564–575. | |
dc.relation | Spentzos, A.; Barakos, G.; Badcock, K.; Richards, B.; Wernert, P.; Schreck, S.; Ra el, M. Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics. AIAA J. 2005, 43, 1023–1033. | |
dc.relation | Paraschivoiu, I. Wind Turbine Design with Emphasis on Darrieus Concept; Polytechnic International Press: Monteral, QC, Canada, 2002. | |
dc.relation | Marten, D.; Wendler, J.; Pechlivanoglou, G.; Nayeri, C.N.; Paschereit, C.O. Qblade: An open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 264–269. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos reservados - Energies, 2020 | |
dc.source | https://www.mdpi.com/journal/energies | |
dc.title | Numerical simulation of the flow around a straight blade darrieus water turbine | |
dc.type | Artículo de revista | |