dc.creatorArcos Hurtado, Édgar Francisco
dc.creatorLopez Sotelo, Jesus Alfonso
dc.date.accessioned2019-04-08T13:29:34Z
dc.date.available2019-04-08T13:29:34Z
dc.date.created2019-04-08T13:29:34Z
dc.date.issued2013-04
dc.identifier01210777
dc.identifierhttp://hdl.handle.net/10614/10821
dc.description.abstractSe presenta el modelo de un sistema multi-agente para llevar a cabo tareas de vigilancia en un terreno desconocido, en el cual un equipo de agentes autónomos, a partir de reglas simples, se distribuye en el terreno de tal manera que no existan porciones o áreas del mismo que no estén siendo monitoreadas o vigiladas. Este modelo se aplica a la exploración de un cultivo virtual de plantas, al que inicialmente se afecta con un algoritmo de difusión de un hongo fitopatógeno. Mediante simulaciones se puede observar el desempeño del equipo de agentes, teniendo en cuenta la dispersión en distintos tamaños del cultivo simulado y la cantidad de objetivos de búsqueda encontrados (plantas infectadas por el hongo fitopatógeno). Finalmente, de acuerdo con las simulaciones realizadas, se puede concluir que bajo reglas simples, optimizadas −a partir de la quimiotaxis de las bacterias− y con un grado de cooperación dado por su estado, emerge una distribución de los agentes en la que cada uno explora una región del terreno según el tamaño y la cantidad de agentes en el mismo.
dc.description.abstractIn order to mitigate the plant diseases caused by fungal pathogens, this work presents the design of a control strategy based on a multi-agent system supported by data clustering techniques and computational geometry. Initially, the problem lies in monitoring a crop to give a report on the status of the plants for a disease caused by a fungus is concerned. This procedure is performed by a simulated agents representing rovers, which, from simple rules based on bacterial chemotaxis, are responsible for surveying the whole field. With the information provided by these explorers agents, performing a clustering of most infected areas, then performing a virtual division of the land through a Voronoi diagram to create different regions where each one will correspond a number of agents to eradicate the disease, these agents responsible for mitigating disease represent sprayers robots, as these agents are distributed in the infected areas is based on the ideal free distribution with which is achieved that the number of robots of each area according to the size of that region and thus more quickly to eradicate the disease that affects the crop
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.relation70
dc.relation41
dc.relation64
dc.relationArcos Hurtado, É. F., & López Sotelo, J. A. (2013). Distribución espacial de agentes autónomos basada en la teoría de forrajeo para aplicaciones de vigilancia y monitoreo. El Hombre y la Máquina, (41), 64-70. http://hdl.handle.net/10614/10821
dc.relationEl hombre y la máquina
dc.relationAmigoni, F., Gatti, N. & Ippedico, A. (2008). A game-theoretic approach to determining effcient patrolling strategies for mobile robots. Proc. IAT, 2, 500-503. IEEE.
dc.relationAndrews, B. W., Passino. K. M. & Waite, T. A. (2007). Foraging theory for autonomous vehicle decision-making system design. Journal of Intelligent and Robotic Systems, 49, (1), 39-65.
dc.relationGrift, T. (2007). Robotics in crop production. Encyclopedia of Agricultural, Food, and Biological Engineering. Taylor & Francis.
dc.relationHaque, M. (2010). Sustainable group sizes for multi-agent search-and-patrol teams. Mathematical Theory of Networks and Systems. Budapest, Hungary.
dc.relationHouston, A. & McNamara, J. M. (1999). Models of adaptive behaviour. Cambridge University Press.
dc.relationLiu, Y. & Passino, K. M. (2002). Biomimicry of social foraging bacteria for distributed optimization: Models, principles, and emergent behaviors. Journal of Optimization Theory and Applications, 115, (3), 603-628.
dc.relationMurphey, R. & Pardalos, P. M. (2002). Cooperative control and optimization. Boston: Kluwer Academic.
dc.relationPassino, K. M. (2005). Biomimicry for optimization, control, and automation. London: Springer Verlag.
dc.relationQuijano, N. & Passino, K. M. (2006). Optimality and stability of the ideal free distribution with application to temperature control. American Control Conference. IEEE.
dc.relationStephens, D. W. & Krebs, J. R. (1986). Foraging theory. Princeton University Press. Uny Cao, Y., Fukunaga, A. S. & Kahng
dc.relationAndrew. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4, (1), 7-27.
dc.relationXu, X. M. & Ridout, M. S. (1998). Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio temporal dynamics of plant disease epidemics. Phytopathology, 88, (10), 1000-1012
dc.relationEl hombre y la máquina No. 41, (Ene.-Abr. 2013)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleDistribución espacial de agentes autónomos basada en la teoría de forrajeo para aplicaciones de vigilancia y monitoreo
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución