dc.creatorRamirez-Moreno, David Fernando
dc.creatorHurtado-López, Julián
dc.date.accessioned2016-09-02T19:10:30Z
dc.date.available2016-09-02T19:10:30Z
dc.date.created2016-09-02T19:10:30Z
dc.date.issued2014
dc.identifier9789588713571
dc.identifierhttp://hdl.handle.net/10614/9140
dc.description.abstractEl Sistema Nervioso Central (SNC) en los humanos y animales complejos cumple, entre otras funciones, con la producción de representaciones internas del entorno externo inmediato, bajo la forma de códigos neuronales poblacionales, que son generados en los diferentes núcleos o capas neuronales, transferidos en serie entre las distintas regiones o áreas por medio de los enlaces sinápticos, transformados y procesados de manera paralela por las distintas unidades neuronales que componen estos núcleos o capas, para finalmente producir una conducta o comportamiento observable, que en los casos exitosos son respuestas adecuadas a las necesidades de supervivencia o a las acciones del entorno sobre los individuos
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.relationRamírez Moreno, D.F., Hurtado López, J. (2013). Modelamiento y simulación de circuitos sinápticos sensoriomotores: Introducción a la Neurobiología Computacional. Universidad Autónoma de Occidente. http://hdl.handle.net/10614/9140
dc.relationAmaral, D. (2000). The functional organization of perception and movement. In: Principles of Neural Science, 4th Edition (E. R. Kandel, J. H. Schwartz, T. M. Jessell, Eds.), New York: McGraw-Hill
dc.relationAston-Jones, G. y Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci., 28(1):403–450
dc.relationBeenhakker, M. P. (2004). Mechanosensory activation of a motor circuit by coactivation of two projection neurons. J Neurosci, 24(30):6741–6750.
dc.relationBerridge, C. W. (2008). Noradrenergic modulation of arousal. Brain research reviews, 58(1):1–17
dc.relationBorn, R. T. y Bradley, D. C. (2005). Structure and function of visual area MT. Annu. Rev. Neurosci., 28:157–189
dc.relationColzato, L. S., Wouwe, N. C. V., y Hommel, B. (2007). Feature binding and affect: Emotional modulation of visuo-motor integration. Neuropsychologia, 45:440–446
dc.relationDayan, P. (2003). Pattern formation and cortical maps. Journal of Physiology-Paris, 97(4-6):475–489
dc.relationDiamond, M. E., Petersen, R. S., Harris, J. A., y Panzeri, S. (2003). Investigations into the organization of information in sensory cortex. J Physiol Paris, 97(4-6):529–36.
dc.relationEliasmith, C. y Anderson, C. H. (2003). Neural Engineering (Computational Neuroscience Series): Computational, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge, MA, USA
dc.relationEtkin, A., Egner, T., Peraza, D. M., Kandel, E. R., y Hirsch, J. (2006). Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6):871–82
dc.relationFrégnac, Y., Monier, C., Chavane, F., Baudot, P., y Graham, L. (2003). Shunting inhibition, a silent step in visual cortical computation. Journal of physiology, Paris, 97(4-6):441–451
dc.relationGold, J. I. y Shadlen, M. N. (2007). The Neural Basis of Decision Making. Annual Review of Neuroscience, 30(1):535–574
dc.relationHariri, A. R., Mattay, V. S., Tessitore, A., Fera, F., y Weinberger, D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53(6):494–501.
dc.relationHarvey, R. J. (2008). The extraction of features and disparities from images by a model based on the neurological organization of the visual system. Vision Research, 48(11):1297–1306
dc.relationKelly, R. y Stefanacci, L. (2009). Amygdala: Structure and circuitry in primates. In Squire, L. R., editor, Encyclopedia of Neuroscience, pages 341–345. Academic Press, Oxford.
dc.relationMarkram, H., ToledoRodriguez, M., Wang, Y., Gupta, A., Silberberg, G., y Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10):793–807
dc.relationMcCormick, D. A. (2004). Membrane Properties and Neurotransmitter Actions. In: The Synaptic Organization of the Brain, 5th Edition (Shepherd G.), Oxford University Press
dc.relationPezawas, L., Lindenberg, A. M., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., Egan, M. F., Mattay, V. S., Hariri, A. R., y Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci, 8(6):828–834
dc.relationRamírez-Moreno, D. F. (2009). Modelo computacional de la modulación de la transformación sensorial motora. PhD thesis, Universidad del Valle, Cali, Colombia.
dc.relationRolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain Cogn, 55(1):11–29
dc.relationSasaki, Y. (2007). Processing local signals into global patterns. Current Opinion in Neurobiology, 17(2):132–139.
dc.relationSerre, T., Wolf, L., Bileschi, S., Riesenhuber, M., y Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):411–426.
dc.relationTheunissen, F. E. y Miller, J. P. (1991). Representation of sensory information in the cricket cercal sensory system. II. Information theoretic calculation of system accuracy and optimal tuning-curve widths of four primary interneurons. J Neurophysiol, 66(5):1690–1703.
dc.relationWallis, J. D. (2007). Orbitofrontal cortex and its contribution to decisionmaking. Annu. Rev. Neurosci., 30:31–56.
dc.relationWilson, H. R. (1997). A neural model of foveal light adaptation and afterimage formation. Visual Neuroscience, 14:403–423
dc.relationXue, G., Lu, Z., Levin, I. P., Weller, J. A., Li, X., y Bechara, A. (2009). Functional dissociations of risk and reward processing in the medial prefrontal cortex. Cereb Cortex, 19(5):1019–27
dc.relationYu, A. J. y Dayan, P. (2005). Uncertainty, Neuromodulation, and Attention. Neuron, 46(6):681–692.
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titleModelamiento y simulación de circuitos sinápticos sensoriomotores: Introducción a la Neurobiología Computacional
dc.typeLibro


Este ítem pertenece a la siguiente institución