dc.contributorIntechOpen
dc.creatorHidalgo Salazar, Miguel Ángel
dc.creatorLuna Vera, Fernando
dc.creatorCorrea Aguirre, Juan Pablo
dc.date.accessioned2022-01-13T18:36:29Z
dc.date.accessioned2022-09-22T18:26:28Z
dc.date.available2022-01-13T18:36:29Z
dc.date.available2022-09-22T18:26:28Z
dc.date.created2022-01-13T18:36:29Z
dc.date.issued2018
dc.identifier9789535163237
dc.identifierhttps://hdl.handle.net/10614/13535
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3451255
dc.description.abstractBiocomposites are materials formed by mixing a polymer matrix and a filler or reinforcement, with the characteristic that at least one should be of biological origin. For this study, biocomposites were obtained from natural fibers of cane bagasse and polypropylene, using bagasse from postindustrial sources, originating from the production of sugarcane from the Valle-Cauca region in Colombia. In addition, cane bagasse fibers were treated chemically, with the purpose of improving the interfacial relationship. Polypropylene homopolymer was used as a polymeric matrix, which was mixed in a twin screw extruder, obtaining different materials as biocomposites. Finally, it was possible to obtain a suitable biocomposite for application in injection molding processes and studying its mechanical, viscoelastic, and thermal behaviors, through DSC, TGA, DMA, and SEM techniques
dc.languageeng
dc.publisherIntechOpen
dc.relation151
dc.relation131
dc.relationHidalgo Salazar, M.A., Luna Vera, F., Correa Aguirre, J.P. (2018). Biocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties. Characterizations of Some Composite Materials. IntechOpen. Characterizations of Some Composite Materials. IntechOpen (Capítulo 8), pp. 131-151.
dc.relationCharacterizations of Some Composite Materials
dc.relation[1] Joseph K, Thomas S, Pavithran C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer (Guildf). 1996;37(23):5139- 5149. Available from: https://www.sciencedirect.com/science/article/pii/0032386196001449
dc.relation[2] Chen HL, Porter RS. Composite of polyethylene and kenaf, a natural cellulose fiber. Journal of Applied Polymer Science. 1994; 54(11):1781-1783. DOI: 10.1002/app.1994.070541121
dc.relation[3] Coutinho FMB, Costa THS, Carvalho DL. Polypropylene-wood fiber composites: Effect of treatment and mixing conditions on mechanical properties. Journal of Applied Polymer Science. 1997;65(6):1227-1235. DOI: 10.1002/%28SICI%291097-4628%2819970808%2965% 3A6%3C1227%3A%3AAID-APP18%3E3.0.CO%3B2-Q
dc.relation[4] La Mantia FP, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Composite Interfaces. 2007;14(7-9): 685-698. DOI: 10.1163/156855407782106500
dc.relation[5] Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. Acetylated plant-fiber-reinforced polyester composites: A study of mechanical, hygrothermal, and aging characteristics. Polymer-Plastics Technology and Engineering. 2000;39(4):757-781. DOI: 10.1081/PPT-100 100057
dc.relation[6] Mathew L, Joseph KU, Joseph R. Isora fibres and their composites with natural rubber. Progress in Rubber, Plastics and Recycling Technology. 2004;20(4):337-349
dc.relation[7] La Mantia FP, Morreale M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing. 2011;42(6):579-588. Available from: https://www.sciencedirect. com/science/article/pii/S1359835X11000406
dc.relation[8] Panthapulakkal S, Raghunanan L, Sain M, KC B, Tjong J. Natural fiber and hybrid fiber thermoplastic composites: Advancements in lightweighting applications. Green Composites. 2017:39-72. Available from: https://www.sciencedirect.com/science/article/ pii/B9780081007839000034
dc.relation[9] El-Sabbagh A. Effect of coupling agent on natural fibre in natural fibre/polypropylene composites on mechanical and thermal behaviour. Composites Part B: Engineering. 2014;57:126- 135. Available from: https://www.sciencedirect.com/science/article/pii/S135983681300560X
dc.relation[10] Truong M, Zhong W, Boyko S, Alcock M. A comparative study on natural fibre density measurement. Journal of the Textile Institute. 2009;100(6):525-529. DOI: 10.1080/00405 000801997595
dc.relation[11] Teja MS, Ramana MV, Sriramulu D, Rao CJ. Experimental investigation of mechanical and thermal properties of sisal fibre reinforced composite and effect of sic filler material. IOP Conference Series Materials Science and Engineering. 2016;149(1):012095. Available from: http://stacks.iop.org/1757-899X/149/i=1/a=012095?key=crossref.f58678 00e25ad9145654bd70cae9ae11
dc.relation[12] Ashik KP, Sharma RS. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. Journal of Minerals and Materials Characterization and Engineering. 2015;03(05):420-426. Available from: http://www.scirp.org/journal/Paper Download.aspx?DOI=10.4236/jmmce.2015.35044
dc.relation[13] Posada JA, Osseweijer P. Socioeconomic and environmental considerations for sustainable supply and fractionation of lignocellulosic biomass in a biorefinery context. Biomass Fractionation Technology a Lignocellulosic Feedstock Based Biorefinery. 2016:611-631. Available from: https://www.sciencedirect.com/science/article/pii/B9780128023235000268
dc.relation[14] Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J. Possible futures towards awood-based bioeconomy:A ScenarioA nalysis for Germany. Sustain. 20186(;98):1-24
dc.relation[15] Carlos Cueva-Orjuela J, Hormaza-Anaguano A, Merino-Restrepo A. Sugarcane bagasse and its potential use for the textile effluent treatment. DYNA. 2017;84(203):291-297. DOI: 10.15446/dyna.v84n203.61723
dc.relation[16] Vilay V, Mariatti M, Mat Taib R, Todo M. Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Composites Science and Technology. 2008;68(3-4):631-638. Available from: https://www. sciencedirect.com/science/article/pii/S0266353807003843
dc.relation[17] Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Composites Part A: Applied Science and Manufacturing. 2012;43(1, 1):114-120. Available from: https://www.sciencedirect.com/science/article/pii/S1359835X11003228
dc.relation[18] Beninia KCCC, Voorwald HJC, Cioffi MOH. Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering. 2011;10:3246-3251. Available from: https://www.sciencedirect.com/science/article/pii/ S1877705811007247
dc.relation[19] Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, Luz SM. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers. 2009;75(2):317-321. Available from: https://www.sciencedirect. com/science/article/pii/S014486170800338X
dc.relation[20] Fogorasi M, Barbu I. The potential of natural fibres for automotive sector—review. IOP Conference Series Materials Science and Engineering. 2017
dc.relation[21] Mohammed L, Ansari MNM, Pua G, Jawaid M, Islam MS. A review on natural fiber reinforced polymer composite and its applications. The International Journal of Polymer Science. 2015;2015:1-15. Available from: http://www.hindawi.com/journals/ijps/2015/243947/
dc.relation[22] Rao J, Zhou Y, Fan M. Revealing the interface structure and bonding mechanism of coupling agent treated WPC. Polymers (Basel). 2018;10(3):266-279
dc.relation[23] Catto AL, Stefani BV, Ribeiro VF, Santana RMC. Influence of coupling agent in compatibility of post-consumer HDPE in thermoplastic composites reinforced with eucalyptus fiber. Materials Research. 2014;17(suppl 1):203-209. Available from: http://www.scielo. br/scielo.php?script=sci_arttext&pid=S1516-14392014000700033&lng=en&tlng=en
dc.relation[24] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews. 2008;108(9):3893-3957. Available from: http://pubs.acs.org/doi/abs/10.1021/cr068035q
dc.relation[25] Clemons CM, Sabo RC, Kaland ML, Hirth KC. Effects of silane on the properties of wood-plastic composites with polyethylene-polypropylene blends as matrices. Journal of Applied Polymer Science. 2011;119(3):1398-1409. DOI: 10.1002/app.32566
dc.relation[26] Lu JZ, Professor A, McNabb HS, Professor J. Society of wood science and technology state-of-the-art review Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments’ Qinglin W u t
dc.relation[27] Cao H, Amador C, Jia X, Ding Y. Capillary dynamics of water/ethanol mixtures. Industrial and Engineering Chemistry Research. 2015;54(48):12196-12203. DOI: 10.1021/ acs.iecr.5b03366
dc.relation[28] Prakash S, Xi E, Patel AJ. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(20):5508-5513. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 27140619
dc.relation[29] Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiberreinforced composites: A review. Journal of Polymers and the Environment. 2007;15(1): 25-33. DOI: 10.1007/s10924-006-0042-3
dc.relation[30] Luna Vera F, Melo Cortes HA, Viviana Murcia C, Charry Galvis I. Informador técnico. Informador técnico. 2014;78(2):106-114. ISSN 0122-056X, ISSN-e 2256-5035. Centro Nacional de Asistencia Técnica a la Industria, ASTIN-SENA. Available from: https://dialnet.unirioja. es/servlet/articulo?codigo=5129559
dc.relation[31] Lin B-J, Chen W-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Frontiers in Energy Research. 2015;3:1-4
dc.relation[32] Sood M, Dwivedi G. Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egypt J Pet [Internet]. 2017;26(4):911-919
dc.relation[33] Malenab RAJ, Ngo JPS, Promentilla MAB. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials (Basel, Switzerland). 2017; 10(6):579-598
dc.relation[34] Goulart SAS, Oliveira TA, Teixeira A, Miléo PC, Mulinari DR. Mechanical behaviour of polypropylene reinforced palm fibers composites. In: Procedia Engineering. 2011;10: 2034-2039
dc.relation[35] Chui-gen G, Yong-ming S, Qing-wen W, Chang-sheng S. Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites. 2006;17(4):315-318
dc.relation[36] Hidalgo-Salazar MA, Munõz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. International Journal of Polymer Science. 2015;2015:1-8
dc.relation[37] Luz SM, Gonçalves AR, Del’arco AP, Ferrão PMC. Composites from Brazilian natural fibers with polypropylene: mechanical and thermal properties. Composite Interfaces. 2008;15(7-9):841-850. DOI: 10.1163/156855408786778366
dc.relation[38] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Composites Part B: Engineering. 2013;55:345-351. Available from: https://www.sciencedirect.com/science/ article/pii/S1359836813003430
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - IntechOpen, 2018
dc.titleBiocomposites from Colombian Sugarcane Bagassewith Polypropylene: Mechanical, Thermal and Viscoelastic Properties
dc.typeCapítulo - Parte de Libro


Este ítem pertenece a la siguiente institución