dc.creatorCorrea Valencia, Maritza
dc.creatorFlores, Víctor
dc.creatorQuinonez, Alma Yadira
dc.date.accessioned2019-11-28T20:43:34Z
dc.date.accessioned2022-09-22T18:24:57Z
dc.date.available2019-11-28T20:43:34Z
dc.date.available2022-09-22T18:24:57Z
dc.date.created2019-11-28T20:43:34Z
dc.date.issued2017-05-27
dc.identifierFlores V., Correa M., Quiñonez Y. (2017) Performance of Predicting Surface Quality Model Using Softcomputing, a Comparative Study of Results. In: Ferrández Vicente J., Álvarez-Sánchez J., de la Paz López F., Toledo Moreo J., Adeli H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science, vol 10337. Springer, Cham
dc.identifier978-3-319-59740-9 (en línea)
dc.identifier9783319597393 (impreso)
dc.identifier1611-3349 (en línea)
dc.identifier0302-9743 (impresa)
dc.identifierhttp://hdl.handle.net/10614/11616
dc.identifierhttps://link.springer.com/chapter/10.1007/978-3-319-59773-7_51
dc.identifierhttps://link.springer.com/content/pdf/10.1007%2F978-3-319-59773-7.pdf
dc.identifierhttps://doi.org/10.1007/978-3-319-59740-9_23
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3450526
dc.description.abstractThis paper describes a comparative study of performance of two models predicting surface quality in high-speed milling (HSM) processes using two different machining centers. The models were created with experimental data obtained from two machine-tools with different characteristics, but using the same experimental model. In both cases, work pieces (probes) of the same material were machined (steel and aluminum probes) with cutting parameters and characteristics proper of production processes in industries such as aeronautics and automotive. The main objective of this study was to compare surface quality prediction models created in two machining centers to establish differences in outcomes and the possible causes of these differences. In addition, this paper deals with the validation of each model concerning surface quality obtained, along with comparing the quality of the models with other predictive surface quality models based on similar techniques
dc.languageeng
dc.publisherSpringer, Cham
dc.relationLecture Notes in Computer Science. 10338. Theoretical Computer Science and General Issues. 10338
dc.relationNatural and Artificial Computation for Biomedicine and Neuroscience : International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part I. Páginas 233-242
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.sourceAhmad, N., Janahiraman, T.V.: Modelling and prediction of surface roughness and power consumption using parallel extreme learning machine based particle swarm optimization. In: Cao, J., Mao, K., Cambria, E., Man, Z., Toh, K.-A. (eds.) Proceedings of ELM-2014 Volume 2. PALO, vol. 4, pp. 321–329. Springer, Cham (2015). doi: 10.1007/978-3-319-14066-7_31
dc.sourceAltintas, Y., Weck, M.: Chatter stability of metal cutting and grinding. CIRP Ann. Manuf. Technol. 53, 40–51 (2004)
dc.sourceBadu, S., Vinayagam, B.: Surface roughness prediction model using adaptive particle swarm optimization (APSO) algorithm. Intell. Fuzzy Syst. 28, 345–360 (2015)
dc.sourceBenardos, P., Vosniakos, G.: Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43, 833–844 (2003)
dc.sourceCorrea, M., Bielza, C., Ramírez, M., Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. Int. J. Syst. Sci. 39, 1181–1192 (2008)
dc.sourceCorrea, M., Bielza, C., Pamies-Teixeira, P.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009)
dc.sourceD‘Mello, G., Pai, S.: Prediction of surface roughness in high speed machining: a comparison. Proc. Int. J. Res. Eng. Technol. 1, 519–525 (2014)
dc.sourceEzugwua, E., Faderea, D., Onney, J., Bonney, J., Silva, R., Sales, W.: Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using artificial neural network. Int. J. Mach. Tools Manuf. 45, 1375–1385 (2005)
dc.sourceFlores, V., Correa, M., Alique, J.R.: Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Soft Computing. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(1), 38–43 (2011)
dc.sourceFriedman, N., Geiger, D., Goldszmit, M.: Bayesian network classifiers. Mach. Learn. 29, 131–161 (1997)
dc.sourceHao, W., Zhu, X., Li, X.: Prediction of cutting force for self-propelled rotary tool using artificial neural network. J. Mater. Process. Technol. 180, 23–29 (2006)
dc.sourceIzamshah, R., Yuhazri, M., Hadzley, M., Amran, M.: Effects of end mill helix angle on accuracy for machining thin-rib aerospace component. Appl. Mech. Mater. 315, 773–777 (2013)
dc.sourceJiang, B., He, T., Gu, Y., et al.: Method for recognizing wave dynamics damage in high-speed milling cutter. Int. J. Adv. Manuf. Technol. (2017). doi: 10.1007/s00170-017-0128-1
dc.sourceLela, B., Bajie, D., Jozié, S.: Regression analysis, support vector machines, and Bayesian neural network approaches to modelling surface roughness in face milling. Adv. Manuf. Technol. 42, 1082–1089 (2009)
dc.sourceMacQueen, J.: Some methods for classification analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (2003)
dc.sourceShang, S., Li, J.: Tool wear and cutting forces variation in high-speed end-milling Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 46, 69–78 (2010)
dc.sourceOzel, T., Esteves, A., Davim, J.: Neural network process modelling for turning of steel parts using conventional and wiper inserts. Int. J. Mater. Prod. Technol. 35, 246–258 (2009)
dc.sourceRamírez-Cadena, M., Correa, M., Rodríguez-González, C., Alique, J.R.: Surface roughness modeling based on surface roughness feature concept for high speed machining. Am. Soc. Mech. Eng. Manuf. Eng. Div. 16(1), 811–815 (2005)
dc.sourceSoleimanimehr, H., Nategh, M., Amini, S.: Modelling of surface roughness in vibration cutting by artificial neural network. Proc. World Acad. Sci. Eng. Technol. 40, 386–390 (2009)
dc.sourceStone, M.: Cross-validatory choice and assessment of statistical prediction. J. Roy. Stat. Soc. 36, 111–147 (1974)
dc.sourceZhou, L., Cheng, K.: Dynamic cutting process modelling and its impact on the generation of surface topography and texture in nano/micro cutting. In: Proceedings of IMechE-2009, vol. 233, pp. 247–266 (2009)
dc.sourceZuperl, U., Cus, F.: Optimization of cutting conditions during cutting by using neural networks. Robot. Comput. Integr. Manuf. 19, 189–199 (2003)
dc.subjectCenter kernel alignment
dc.subjectFeature selection
dc.subjectFeature selection
dc.subjectHuman motion
dc.subjectKinematics
dc.subjectMotion capture data
dc.subjectPrincipal component analysis
dc.subjectRelevance
dc.titlePerformance of predicting surface quality model using softcomputing, a comparative study of results
dc.typeCapítulo - Parte de Libro


Este ítem pertenece a la siguiente institución