dc.creatorSepulveda Salcedo, Lilian Sofia
dc.creatorArias, Juddy H.
dc.creatorMartinez,Hector Jairo
dc.creatorVasilieva, Olga
dc.date.accessioned2020-02-13T16:20:25Z
dc.date.available2020-02-13T16:20:25Z
dc.date.created2020-02-13T16:20:25Z
dc.date.issued2015
dc.identifier1311-8080
dc.identifier1314-3395
dc.identifierhttp://red.uao.edu.co//handle/10614/11876
dc.description.abstractEn este trabajo, presentamos un modelo depredador-presa para analizar la dinámica de la población del mosquito Aedes aegypti, al que se atribuye bastante la transmisión del dengue en Cali, Colombia. El modelo describe una interacción de una especie depredadora acuática introducida deliberadamente en el hábitat local de reproducción de mosquitos, donde los estadios inmaduros de Aedes aegypti (huevos, larvas y pupas) ya están presentes y constituyen la población de presas. El modelo también tiene en cuenta la población local de adultos.
dc.description.abstractIn this paper, we introduce a predator-prey model to analyze the population dynamics of the Aedes aegypti mosquito which is fairly blamed for the transmission of dengue in Cali, Colombia. The model describes an interaction of an aquatic predacious species deliberately introduced into local mosquito breeding habitat, where the Aedes aegypti immature stages (eggs, larvae, and pupae) are already present and constitute the prey population. The model also accounts for local population of adult female mosquitoes (or mature stage) emerging from the breeding site. This population is considered as a target for reduction by deploying an adequate predacious species since only female mosquitoes are held responsible for transmission of dengue and other vector-borne diseases. Having analyzed the model, we have derived the mosquito survival threshold with predation as a function of predator’s biological characteristics. The model’s parameters were adjusted to the average seasonal temperatures of Cali, Colombia and explicit conditions for biological characteristics of prospective efficient predators were established. Numerical simulation with introduction of an efficient predacious species in local mosquito breeding habitats revealed the possibility of eventual mosquito extinction in such localities. Finally, some particular biological species were proposed as potential candidates for efficient predators
dc.languageeng
dc.publisherAcademic Publications Ltd.
dc.relation597
dc.relation4
dc.relation561
dc.relation105
dc.relationSepúlveda Salcedo, L.S., Arias, J. H., Martínez, H.J., Vasilieva, O.(2015). Predator-prey model for analysis of aedes aegypti population dynamics in Cali, Colombia. International Journal of Pure and Applied Mathematics. 105(4), 561-597. http://red.uao.edu.co//handle/10614/11876
dc.relationInternational Journal of Pure and Applied Mathematics
dc.relationAlshehri, M. S., and Saeed, M. Dengue fever outburst and its relationship with climatic factors. World Applied Sciences Journal 22, 4 (2013), 506–515.
dc.relationArias, J., Martínez, H., Sepulveda, L., and Vasilieva, O. Estimación de parámetros de dos modelos para la din´amica del dengue en Cali [Parameter estimation for two models describing dynamics of dengue in Cali]. Internal Research Report, Project C.I. 7900, 2014.
dc.relationBravo, A., Likitvivatanavong, S., Gill, S. S., and Sober´on, M. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41, 7 (2011), 423–431. Special Issue: Toxicology and Resistance.
dc.relationBrown, J. E., McBride, C. S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Fernandez-Salas, I., Ponlawat, A., Cornel, A. J., Black, W. C., Gorrochotegui-Escalante, N., Urdaneta-Marquez, L., Sylla, M., Slotman, M., Murray, K. O., Walker, C., and Powell, J. R. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proceedings of the Royal Society B: Biological Sciences 278, 1717 (2011), 2446–2454.
dc.relationChang, M. S., Christophel, E. M., Gopinath, D., and Abdur, R. M. Challenges and future perspective for dengue vector control in the Western Pacific Region. Western Pacific Surveillance and Response Journal: WPSAR 2, 2 (2011), 9.
dc.relationChitnis, N., Hyman, J., and Cushing, J. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology 70, 5 (2008), 1272–1296.
dc.relationChristophers, S. Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. Cambridge University Press, 1960. Escobar-Morales, G., Ed. Cali en cifras 2011 [Cali in numbers 2011]. Departamento Administrativo de Planeaci´on. Alcaldia de Santiago de Cali, 2011.
dc.relationEsteva, L., and Mo Yang, H. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical Biosciences 198, 2 (2005), 132–147.
dc.relationFaulde, M. K., Uedelhoven, W. M., and Robbins, R. G. Contact toxicity and residual activity of different permethrin-based fabric impregnation methods for Aedes aegypti (diptera: Culicidae), Ixodes ricinus (acari: Ixodidae), and Lepisma saccharina (thysanura: Lepismatidae). Journal of Medical Entomology 40, 6 (2003), 935–941.
dc.relationFonseca-Gonz´alez, I., Qui˜nones, M. L., Lenhart, A., and Brogdon, W. G. Insecticide resistance status of Aedes aegypti (l.) from Colombia. Pest Management Science 67, 4 (2011), 430–437.
dc.relationGuzman, A., and Ist´uriz, R. E. Update on the global spread of dengue. International Journal of Antimicrobial Agents 36 (2010), S40–S42.
dc.relationGuzman, M. G., Halstead, S. B., Artsob, H., Buchy, P., Farrar, J., Gubler, D. J., Hunsperger, E., Kroeger, A., Margolis, H. S., Mart´ınez, E., Nathan, M. B., Pelegrino, J. L., Simmons, C., Yoksan, S., and Peeling, R. W. Dengue: a continuing global threat. Nature Reviews Microbiology 8 (2010), S7–S16.
dc.relationHagenlocher, M., Delmelle, E., Casas, I., and Kienberger, S. Assessing socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs expert-based modeling. International Journal of Health Geographics 12, 1 (2013), 36.
dc.relationHalstead, S. B. Identifying protective dengue vaccines: guide to mastering an empirical process. Vaccine 31, 41 (2013), 4501–4507.
dc.relationJansen, C. C., and Beebe, N. W. The dengue vector Aedes aegypti : what comes next. Microbes and Infection 12, 4 (2010), 272–279.
dc.relationKay, B., and Nam, V. S. New strategy against Aedes aegypti in Vietnam. The Lancet 365, 9459 (2005), 613–617.
dc.relationKay, B. H., Nam, V. S., Van Tien, T., Yen, N. T., Phong, T. V., Diep, V. T., Ninh, T. U., Bektas, A., and Aaskov, J. G. Control of Aedes vectors of dengue in three provinces of Vietnam by use of Mesocyclops (Copepoda) and community-based methods validated by entomologic, clinical, and serological surveillance. The American Journal of Tropical Medicine and Hygiene 66, 1 (2002), 40–48.
dc.relationMarín, C., Mu˜noz, A., Toro, H., and Restrepo, L. Modeling strategies for chemical and biological control of Aedes aegypti. Matem´aticas: Enseñanza Universitaria XIX (2011), 63–78.
dc.relationMarten, G. G. Human Ecology: Basic Concepts for Sustainable Development. Earthscan, London, 2001.
dc.relationMarten, G. G., and Reid, J. W. Cyclopoid copepods. Journal of the American Mosquito Control Association 23, sp2 (2007), 65–92.
dc.relationMcGraw, E. A., and O’Neill, S. L. Beyond insecticides: new thinking on an ancient problem. Nature Reviews Microbiology 11, 3 (2013), 181–193.
dc.relationMéndez, F., Barreto, M., Arias, J. F., Rengifo, G., Muñoz, J., Burbano, M. E., and Parra, B. Human and mosquito infections by dengue viruses during and after epidemics in a dengue endemic region of Colombia. The American Journal of Tropical Medicine and Hygiene 74, 4 (2006), 678–683.
dc.relationNam, V. S., Yen, N. T., Duc, H. M., Tu, T. C., Thang, V. T., Le, N. H., Le Loan, L., Huong, V. T. Q., Khanh, L. H. K., Trang, H. T. T., et al. Community-based control of Aedes aegypti by using Mesocyclops in southern Vietnam. The American Journal of Tropical Medicine and Hygiene 86, 5 (2012), 850–859.
dc.relationNam, V. S., Yen, N. T., Holynska, M., Reid, J. W., and Kay, B. H. National progress in dengue vector control in Vietnam: survey for Mesocyclops (Copepoda), Micronecta (Corixidae), and fish as biological control agents. The American Journal of Tropical Medicine and Hygiene 62, 1(2000), 5–10.
dc.relationNam, V. S., Yen, N. T., Phong, T. V., Ninh, T. U., Le Quyen, M., Le Viet, L., Bektas, A., Briscombe, A., Aaskov, J. G., Ryan, P. A., and Kay, B. H. Elimination of dengue by community programs using Mesocyclops (copepoda) against Aedes aegypti in central Vietnam. The American Journal of Tropical Medicine and Hygiene 72, 1 (2005), 67–73.
dc.relationOcampo, C. B., Mina, N. J., Carabal´ı, M., Alexander, N., and Osorio, L. Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. Acta Tropica 132 (2014), 15–22.
dc.relationOcampo, C. B., Salazar-Terreros, M. J., Mina, N. J., McAllister, J., and Brogdon, W. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica 118, 1 (2011), 37–44.
dc.relationOcampo, C. B., and Wesson, D. M. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. The American Journal of Tropical Medicine and Hygiene 71, 4 (2004), 506–513.
dc.relationOrdóñez-González, J. G., Mercado Hernández, R., Flores Suárez, A. E., and Fernández Salas, I. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in northeastern Mexico. Journal of the American Mosquito Control Association 17, 2 (2001), 93–97.
dc.relationRey, J. R., O’Connell, S., Su´arez, S., Men´endez, Z., Lounibos, L. P., and Byer, G. Laboratory and field studies of Macrocyclops albidus (crustacea: Copepoda) for biological control of mosquitoes in artificial containers in a subtropical environment. Journal of Vector Ecology 29 (2004), 124–134.
dc.relationRitchie, S. A. Dengue vector bionomics: why Aedes aegypti is such a good vector. In Dengue and dengue hemorrhagic fever, D. J. Gubler, E. E. Ooi, S. Vasudevan, and J. Farrar, Eds., 2 ed. CAB International, 2014, pp. 455–480.
dc.relationRodrigues de Paula, A., Souza-Brito, E., Pereira, C. R., Pinheiro-Carrera, M., and Samuels, R. I. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for dengue vector control. Biocontrol Science and Technology 18, 10 (2008), 1017–1025
dc.relationInternational Journal of Pure and Applied Mathematics. Volume 105, número 4, (2015); páginas 561-597
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.titlePredator-prey model for analysis of aedes aegypti population dynamics in Cali, Colombia
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución