dc.contributorContreras-Bejarano, Oscar
dc.creatorParra-Castañeda, Daniel Felipe
dc.date.accessioned2021
dc.date.accessioned2021-08-04T15:50:23Z
dc.date.available2021
dc.date.available2021-08-04T15:50:23Z
dc.date.created2021
dc.date.created2021-08-04T15:50:23Z
dc.date.issued2021
dc.identifierParra-Castañeda, D. F. (2021). Impacto del grado de oxidación del refuerzo en el desempeño sísmico de una estructura en concreto. Trabajo de Grado. Universidad Católica de Colombia. Facultad de Ingeniería. Programa de Ingeniería Civil. Bogotá, Colombia
dc.identifierhttps://hdl.handle.net/10983/26374
dc.description.abstractEsta investigación tiene como objetivo comparar el desempeño sísmico de una estructura en condición no oxidada con otra misma estructura bajo la exposición de oxidación en el refuerzo. Se presenta como una oportunidad para identificar la influencia de la corrosión en el comportamiento de las estructuras en concreto reforzado mediante herramientas como el Software Opensees.
dc.languagespa
dc.publisherUniversidad Católica de Colombia
dc.publisherFacultad de Ingeniería
dc.publisherBogotá
dc.publisherIngeniería Civil
dc.relationP. Crespi, M. Zucca, and M. Valente, “On the collapse evaluation of existing RC bridges exposed to corrosion under horizontal loads,” Engineering Failure Analysis, vol. 116, no. June, 2020.
dc.relationZ. Shamsoddini Motlagh, M. Raissi Dehkordi, M. Eghbali, and D. Samadian, “Evaluation of seismic resilience index for typical RC school buildings considering carbonate corrosion effects,” International Journal of Disaster Risk Reduction, vol. 46, no. January, 2020.
dc.relationC. V. Inojosa, “Decanos de la UCV alertan sobre “riesgo de colapso” de algunos techos de las facultades,” 2020.
dc.relationsonia I˜niguez serrano, “Estacionamientos: riesgo de colapso,” 2019.
dc.relationS. Revista, “Estas son las ciudades que tienen mayor riesgo de la peor calidad del aire en Colombia,” 2021.
dc.relationAlcaldia Bogota D.C., “Contaminantes Bogota D.C..”
dc.relationB. jose Luis, “Corrosion- Estructuras/ Medio ambiente,” 2005.
dc.relationJ. B. Mander, M. J. N. Priestley, R. Park, Fellow, and ASCE, “conducted providing the stress-strain relation for the concrete and steel are- known . The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature a,” J. Struct. Eng, vol. 114, no. 8, pp. 1804–1826, 1989.
dc.relationR. Leslie, “The Pushover Analysis, explained in its Simplicity,” vol. 0, no. September 2013, pp. 1–13, 2002.
dc.relationAlcaldia de Bogota, “Decreto 523 de 2010,” 2010.
dc.relationL. Di Sarno and F. Pugliese, “Seismic fragility of existing RC buildings with corroded bars under earthquake sequences,” Soil Dynamics and Earthquake Engineering, vol. 134, no. March, 2020.
dc.relationM. Kamaya, “Fatigue assessment for seismic loads considering material degradation due to stress corrosion cracking,” Nuclear Engineering and Design, vol. 322, pp. 256–265, 2017. 70Impacto del grado de oxidaci´on del refuerzo en el desempe˜no s´ısmico de una estructura en concreto
dc.relationF. Di Carlo, A. Meda, and Z. Rinaldi, “Numerical evaluation of the corrosion influence on the cyclic behaviour of RC columns,” Engineering Structures, vol. 153, no. January, pp. 264–278, 2017.
dc.relationY. C. Ou and N. D. Nguyen, “Influences of location of reinforcement corrosion on seismic performance of corroded reinforced concrete beams,” Engineering Structures, vol. 126, pp. 210–223, 2016.
dc.relationM. Dogan, “Corrosion failure in concrete reinforcement to damage during seismic,” Engineering Failure Analysis, vol. 56, pp. 275–287, 2015.
dc.relationA. Kanchanadevi and K. Ramanjaneyulu, “Effect of corrosion damage on seismic behaviour of existing reinforced concrete beam-column sub-assemblages,” Engineering Structures, vol. 174, no. August, pp. 601–617, 2018.
dc.relationD. Bru, A. Gonz´alez, F. J. Baeza, and S. Ivorra, “Seismic behavior of 1960’s RC buildings exposed to marine environment,” Engineering Failure Analysis, vol. 90, no. February, pp. 324–340, 2018.
dc.relationA. S. Rajput and U. K. Sharma, “Performance of aged reinforced concrete columns under simulated seismic loading,” Structural Concrete, vol. 20, no. 3, pp. 1123–1136, 2019.
dc.relationE. A. Dizaj, R. Madandoust, and M. M. Kashani, “Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosion,” Soil Dynamics and Earthquake Engineering, vol. 114, no. January, pp. 97–112, 2018.
dc.relationY. Li, S. Yin, M. Liu, and Y. Yang, “Influence of chloride dry-wet cycles on seismic behavior of RC columns strengthened with TRC,” Jianzhu Jiegou Xuebao/Journal of Building Structures, vol. 40, no. 4, pp. 94–103, 2019.
dc.relationJ. C. Chanchi Golondrino, G. A. MacRae, J. G. Chase, G. W. Rodgers, A. C. N. Scott, and G. C. Clifton, “Steel Building Friction Connection Seismic Performance – Corrosion Effects,” Structures, vol. 19, no. November 2018, pp. 96–109, 2019.
dc.relationM. Tapan and R. S. Aboutaha, “Effect of steel corrosion and loss of concrete cover on strength of deteriorated RC columns,” Construction and Building Materials, vol. 25, no. 5, pp. 2596–2603, 2011.
dc.relationH. Yalciner, S. Sensoy, and O. Eren, “Time-dependent seismic performance assessment of a single-degree-of-freedom frame subject to corrosion,” Engineering Failure Analysis, vol. 19, no. 1, pp. 109–122, 2012.
dc.relationD. E. Choe, P. Gardoni, D. Rosowsky, and T. Haukaas, “Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion,” Reliability Engineering and System Safety, vol. 93, no. 3, pp. 383–393, 2008. BIBLIOGRAF´IA 71Impacto del grado de oxidaci´on del refuerzo en el desempe˜no s´ısmico de una estructura en concreto
dc.relationY. Goto and N. Kawanishi, “A unified analysis method to predict long-term mechanical performance of steel structures considering corrosion, repair and earthquake,” Advances in Steel Structures (ICASS ’02), vol. II, pp. 1145–1152, 2002.
dc.relationR. Yu, L. Chen, D. Zhang, and Z. Wang, “Life cycle embodied energy analysis of RC structures considering chloride-induced corrosion in seismic regions,” Structures, vol. 25, no. July 2019, pp. 839–848, 2020.
dc.relationX. W. Zheng, H. N. Li, and P. Gardoni, “Life-cycle probabilistic seismic risk assessment of high-rise buildings considering carbonation induced deterioration,” Engineering Structures, vol. 231, no. December 2020, 2021.
dc.relationL. Berto, S. Caprili, A. Saetta, W. Salvatore, and D. Talledo, “Corrosion effects on the seismic response of existing rc frames designed according to different building codes,” Engineering Structures, vol. 216, no. May, 2020.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsCopyright-Universidad Católica de Colombia, 2021
dc.titleImpacto del grado de oxidación del refuerzo en el desempeño sísmico de una estructura en concreto
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución