dc.creator | Cubillos-González, Rolando Arturo | |
dc.creator | Cubillos-González, Rolando Arturo | |
dc.date.accessioned | 2021-02-23T19:09:16Z | |
dc.date.available | 2021-02-23T19:09:16Z | |
dc.date.created | 2021-02-23T19:09:16Z | |
dc.date.issued | 2020-01 | |
dc.identifier | Cubillos-González, R. A. (2020). Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional. Revista de Arquitectura, 22(1), 175-186. | |
dc.identifier | 1657-0308 | |
dc.identifier | https://hdl.handle.net/10983/25589 | |
dc.description.abstract | La transferencia de tecnología sostenible es compleja para las firmas de construcción. Una posible solución es analizar esa clase de transferencia como una red social ya que, si se identifican las diferentes relaciones entre los actores del sector construcción, es posible evaluar la capacidad de adaptación tecnológica de dichos actores. El objetivo fue evaluar la transferencia de tecnología sostenible entre empresas constructoras internacionales que se dedican a construir vivienda social o accesible. Para esto, se identificaron dos países con capacidad de transferencia de tecnología sostenible (Reino Unido y Estados Unidos) y dos países de menor capacidad tecnológica y con potencial de adaptarse a dichas tecnologías (Brasil y Colombia); posteriormente, se seleccionaron cinco firmas constructoras por cada país, con las cuales se hizo un análisis de redes (grado, intensidad, cercanía y densidad), y luego, procesos de simulación. Como resultado se identificó la capacidad de transferencia tecnológica que tienen las empresas latinoamericanas para aceptar y adaptar tecnologías de empresas de países industrializados, y se espera poder desarrollar indicadores de medición del proceso de transferencia tecnológica que permitan comprender mejor la complejidad de este proceso en el área de la vivienda social. | |
dc.language | spa | |
dc.publisher | Universidad Católica de Colombia | |
dc.publisher | Bogotá | |
dc.relation | 186 | |
dc.relation | 1 | |
dc.relation | 175 | |
dc.relation | 22 | |
dc.relation | Revista de Arquitectura | |
dc.relation | Abbasian-Hosseini, S. A., Liu, M., & Hsiang, S. M. (20 15). Social network analysis for construction specialty trade interference and work plan reliability. Proceedings of IGLC 23 - 23rd Annual Conference of the International Group for Lean Construction: Global Knowledge - Global Solutions, 2015-January (919), 143–152. Recuperado de:: http://iglc.net/Papers/Details/1223 | |
dc.relation | Alarcón, D. M., Alarcón, I. M., & Alarcón, L. F. (2013). Social network analysis: A diagnostic tool for information flow in the AEC industry. 21st Annual Conference of the International Group for Lean Construction 2013, IGLC 2013, 196–205. Recuperado de:: http://iglc.net/Papers/Details/864 | |
dc.relation | Alsema, E. A., Anink, D., Meijer, A., Straub, A., & Donze, G. (2016). Integration of Energy and Material Performance of Buildings: I=E+M. Energy Procedia, 96(October), 517–528. Doi:https://doi.org/10.1016/j.egypro.2016.09.094 | |
dc.relation | Asadi, E., Silva, M. G. Da, Antunes, C. H., Dias, L., & Glicksman, L. (2014). Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444–456. | |
dc.relation | Borgatti, S.P., Everett, M.G., & Johnson, J.C. (2013). Analyzing Social Networks. Sage Publications. | |
dc.relation | Carlucci, S., Lobaccaro, G., Li, Y., Catto Lucchino, E., & Ramaci, R. (2016). The effect of spatial and temporal randomness of stochastically generated occupancy schedules on the energy performance of a multiresidential building. Energy and Buildings, 127, 279–300.https://doi.org/10.1016/j.enbuild.2016.05.023 | |
dc.relation | Castillo, T., Alarcón, L. F., & Pellicer, E. (2018). Influence of Organizational Characteristics on Construction Project Performance Using Corporate Social Networks. Journal of Management in Engineering, 34(4). Doi:https://doi.org/10.1061/(ASCE)ME.1943- 5479.0000612 | |
dc.relation | Gelesz, A., & Reith, A. (2015). Climate-based performance evaluation of double skin facades by building energy modelling in Central Europe. Energy Procedia, 78, 555–560. Doi:https://doi.org/10.1016/j.egypro.2015.11.735 | |
dc.relation | Huang, I. B., Keisler, J., & Linkov, I. (2011). Multicriteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409(19), 3578–3594. https://doi.org/10.1016/j.scitotenv.2011.06.022 | |
dc.relation | Kim, M. J., Oh, M. W., & Kim, J. T. (2013). A method for evaluating the performance of green buildings with a focus on user experience. Energy and Buildings, 66, 203–210. https://doi.org/10.1016/j.enbuild.2013.07.049 | |
dc.relation | Kontu, K., Rinne, S., Olkkonen, V., Lahdelma, R., & Salminen, P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93(x), 169–179. https://doi.org/10.1016/j.enbuild.2015.02.003 | |
dc.relation | Liu, Y., Guo, X., & Hu, F. (2014). Cost-benefit analysis on green building energy efficiency technology application: A case in China. Energy and Buildings, 82, 37–46. https://doi.org/10.1016/j.enbuild.2014.07.008 | |
dc.relation | Lopes, R. A., Chambel, A., Neves, J., Aelenei, D., & Martins, J. (2016). A Literature Review of Methodologies Used to Assess the Energy Flexibility of Buildings. Energy Procedia, 91, 1053–1058. Doi: https://doi.org/10.1016/j.egypro.2016.06.274 | |
dc.relation | Ma, H., Zhou, W., Lu, X., Ding, Z., & Cao, Y. (2016). Application of Low Cost Active and Passive Energy Saving Technologies in an Ultra-low Energy Consumption Building. Energy Procedia, 88, 807–813. Doi:https://doi.org/10.1016/j.egypro.2016.06.132 | |
dc.relation | Marques, S. B., Bissoli-Dalvi, M., & Alvarez, C. E. de. (2018). Políticas públicas em prol da sustentabilidade na construção civil em municípios brasileiros. urbe. Revista Brasileira de Gestão Urbana, 10(Suppl. 1), 186-196. Epub July 30, 2018. Doi:https://dx.doi.org/10.1590/2175- 3369.010.supl1.ao10 | |
dc.relation | McKinsey Global Institute. (2017). Reinventing Construction: A Route to Higher Productivity. McKinsey & Company, (February), 20. https://www.mckinsey.com/~/media/ McKinsey/Industries/Capital Projects and Infrastructure/Our Insights/Reinventing construction through a productivity revolution/MGI-Reinventing-construction-Aroute- to-higher-productivity-Full-report.pdf | |
dc.relation | Moschetti, R., & Brattebø, H. (2016). Sustainable business models for deep energy retrofitting of buildings: state-of-the-art and methodological approach. Energy Procedia, 96(1876), 435–445. https://doi.org/10.1016/j.egypro.2016.09.174 | |
dc.relation | Niknam, M., & Karshenas, S. (2015). Sustainable Design of Buildings using Semantic BIM and Semantic Web Services. Procedia Engineering, 118, 909–917.https://doi.org/10.1016/j.proeng.2015.08.530 | |
dc.relation | Panchal, S., Dincer, I., & Agelin-Chaab, M. (2016). Analysis and evaluation of a new renewable energy based integrated system for residential applications. Energy and Buildings, 128, 900–910. https://doi.org/10.1016/j.enbuild.2016.07.038 | |
dc.relation | Park, H., & Han, S. H. (2012). Impact of interfirm collaboration networks in international construction projects: A longitudinal study. In Construction Research Congress 2012: Construction Challenges in a Flat World (pp. 1460–1470). Construction Management and Information Laboratory, Dept. of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea. Doi:https://doi.org/10.1061/9780784412329.147 | |
dc.relation | Pisello, A. L., Castaldo, V. L., Taylor, J. E., & Cotana, F. (2016). The impact of natural ventilation on building energy requirement at interbuilding scale. Energy and Buildings, 127, 870–883. Doi:https://doi.org/10.1016/j.enbuild.2016.06.023 | |
dc.relation | Salcido, J. C., Abdul, A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy & Buildings, 127, 1008–1018. Doi:https://doi.org/10.1016/j.enbuild.2016.06.054 | |
dc.relation | Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220–232. https://doi.org/10.1016/j.enbuild.2012.01.032 | |
dc.relation | Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133–1140. https://doi.org/10.1016/j.buildenv.2010.12.002 | |
dc.relation | Zucker, G., Judex, F., Blöchle, M., Köstl, M., Widl, E., Hauer, S., … Zeilinger, J. (2016). A new method for optimizing operation of large neighborhoods of buildings using thermal simulation. Energy and Buildings, 125, 153–160. https://doi.org/10.1016/j.enbuild.2016.04.081 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Copyright, Universidad Católica de Colombia, 2020 | |
dc.title | Análisis de redes para la transferencia de tecnologías sostenibles entre firmas de construcción internacional | |
dc.type | Artículo de revista | |