dc.creator | Luciani-Mejía, Sara | |
dc.creator | Velasco-Gómez, Rodrigo | |
dc.creator | Hudson, Roland | |
dc.date.accessioned | 2019-03-14T20:54:12Z | |
dc.date.available | 2019-03-14T20:54:12Z | |
dc.date.created | 2019-03-14T20:54:12Z | |
dc.date.issued | 2018-07 | |
dc.identifier | Luciani-Mejía, S., Velasco-Gómez, R., & Hudson, R. (2018). Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo. Revista de Arquitectura (Bogotá), 20(2), 62-77. Doi: http://dx.doi.org/10.14718/ RevArq.2018.20.2.1726 | |
dc.identifier | 1657-0308 | |
dc.identifier | 2357-626X | |
dc.identifier | https://hdl.handle.net/10983/22925 | |
dc.description.abstract | Aiming to contribute to impact reduction in the construction of buildings, various systems of ventilated and conventional facades were designed, involving opaque facades, plant elements, and air chambers. Such systems were evaluated through environmental simulations and prototype measurements at various stages of the project, which allowed comparing results and identifying their behavior in terms of thermal comfort. The results of these simulations compared against measurements highlighted two issues: discrepancies and similarities between inputs and outputs in the above mentioned two process types; as well as the performance of opaque ventilated facades in humid tropical climate such as in Girardot, which suggested a last stage to evaluate passive design strategies in search for thermal comfort and sustainability in architectural projects | |
dc.description.abstract | Com o objetivo de contribuir com a redução de impactos na construção de prédios foram desenhados vários sistemas de fachadas ventiladas e convencionais, que envolvem fachadas opacas, elementos vegetais e duto de ar. Esses sistemas foram avaliados com simulações ambientais e medições em protótipo nas diversas etapas da investigação, o que permitiu a comparação de resultados e a identificação de comportamento em termos de conforto térmico. Os resultados das simulações ante medições vislumbraram duas questões: as discrepâncias e as semelhanças entre os dados de entrada e saída nos dois tipos de processo mencionados, assim como a utilidade das fachadas ventiladas opacas em clima tropical úmido, como Girardot (Colômbia), o que sugeriu uma última etapa de avaliação de estratégias de desenho passivo na busca de conforto térmico e de sustentabilidade no projeto arquitetônico. | |
dc.description.abstract | Con el objetivo de aportar a la reducción de impactos en la construcción de edificaciones fueron diseñados varios sistemas de fachadas ventiladas y convencionales, involucrando fachadas opacas, elementos vegetales y cámaras de aire. Tales sistemas fueron evaluados con simulaciones ambientales y mediciones en prototipo en las diversas etapas de la investigación, lo que permitió la comparación de resultados y la identificación de comportamiento en términos de confort térmico. Los resultados de las simulaciones frente a mediciones vislumbraron dos cuestiones: las discrepancias y similitudes entre los datos de entrada y salida en los dos tipos de proceso mencionados; así como la utilidad de las fachadas ventiladas opacas en clima tropical húmedo como Girardot, lo que sugirió una última etapa de evaluación de estrategias de diseño pasivo en la búsqueda del confort térmico y la sostenibilidad en el proyecto arquitectónico. | |
dc.language | spa | |
dc.publisher | Universidad Católica de Colombia. Facultad de Diseño | |
dc.relation | Revista de arquitectura, Vol. 20, no. 1 (ene. – jun. 2018); p. 62-77. | |
dc.relation | Afonso, C. y Oliveira, A. (2000). Solar chimneys: simulation and experiment. Energy and Buildings (32), 71.79. Doi: https://doi.org/10.1016/ S0378-7788(99)00038-9 | |
dc.relation | Andarini, R. (2014). The role of building thermal simulation for energy efficient building design. Energy Procedia (47), 217-226. Doi: https:// doi.org/10.1016/j.egypro.2014.01.217 | |
dc.relation | Andelkovic, A. S., Mujan, I. y Dakic, S. (2016). Experimental validation of aEnergyPlus model: Application of a multi-storey naturally ventilated double skin façade. Energy and Buildings(118), 27-36. Doi: https://doi. org/10.1016/j.enbuild.2016.02.045 | |
dc.relation | Aparicio-Fernández, C., Vivancos, J.-L., Ferrer- Gisbert, P. y Royo-Pastor, R. (2014). Energy performance of a ventilated façade by simulation with experimental validation. Applied Thermal Engineering (66), 563-570. Doi: http://dx.doi.org/10.1016/j.applthermaleng. 2014.02.041 | |
dc.relation | Balocco, C. (2002). A simple model to study ventilated facades energy performance. Energy and Buildings (34), 469-475. Doi: https://doi. org/10.1016/S0378-7788(01)00130-X | |
dc.relation | Barbosa, S. e Ip, K. (2014). Perspectives of double skin façades for naturallyventilated buildings: A review. Renewable and Sustainable Energy Reviews (40), 1019-1029. Doi: https://doi. org/10.1016/j.rser.2014.07.192 | |
dc.relation | Blanco, J. M., Buruaga, A., Rojí, E., Cuadrado, J. y Pelaz, B. (2016). Energy assessment and optimization of perforated metal sheet doubleskin façades through Design Builder. A case study in Spain. Energy and Buildings (111), 326-336. Doi: http://dx.doi.org/10.1016/j. enbuild.2015.11.053 | |
dc.relation | Bolaños, T. y Moscoso, A. (2011). Consideraciones y selección de especies vegetales para su implementación en ecoenvolventes arquitectónicos: una herramienta metodológica. Revista Nodo, 5(10), 5-20. Recuperado de http://csifesvr.uan.edu.co/index.php/nodo/ article/view/138 | |
dc.relation | Ciampi, M., Leccese, F. y Tuoni, G. (2003). Ventilated facades energy performance in summer cooling of buildings. Solar Energy (75), 491-502. Doi: https://doi.org/10.1016/j.solener. 2003.09.010. | |
dc.relation | Design Builder (19 de octubre de 2017). Design Builder Software Ltd. Recuperado de https:// www.designbuilder.co.uk/ | |
dc.relation | EnergyPlus (19 de octubre de 2017). EneryPlus. Recuperado de https://energyplus.net/ | |
dc.relation | Fantucci, S., Marinosci, C., Serra, V. y Carbonaro, C. (2017). Thermal performance assessment of an opaque ventilated façade in the summer period: calibration of a simulation model through in-field measurements. Energy Procedia (111), 619-628. Doi: https://doi. org/10.1016/j.egypro.2017.03.224 | |
dc.relation | Gagliano, A., Patania, F., Nocera, F. y Signorello, C. (2014). Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings (72), 361-370. Doi: https://doi. org/10.1016/j.enbuild.2013.12.060 | |
dc.relation | Gaillard, L., Giroux-Julien, S., Ménézo, C. y Pabiou, H. (2014). Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions. Solar Energy (103), 223-241. Doi: http://dx.doi. org/10.1016/j.solener.2014.02.018 | |
dc.relation | Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardi, U., Tookey, J., Hin Wa Li, D. y Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews (60), 1052-1065. Doi: https://doi. org/10.1016/j.rser.2016.01.130 | |
dc.relation | Giancola, E., Sanjuan, C., Blanco, E. y Heras, M. R. (2012). Experimental assessment and modelling of the performance of an open joint ventilated façade during actual operating conditions in Mediterranean climate. Energy and Buildings (54), 363-375. Doi: http:// dx.doi.org/10.1016/j.enbuild.2012.07.035 | |
dc.relation | Gratia, E. y De Herde, A. (2004). Optimal operation of a south double-skin facade. Energy and Buildings (36), 41-60. Doi: https://doi. org/10.1016/j.enbuild.2004.05.004 | |
dc.relation | Gratia, E. y De Herde, A. (2007). Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy (81), 435-448. Doi: https://doi. org/10.1016/j.solener.2006.08.006 | |
dc.relation | Haase, M., Silva, F. M. y Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings (41), 361-373. Doi: https://doi.org/10.1016/j. enbuild.2008.11.008 | |
dc.relation | Høseggen, R., Wachenfeldt, B. J. y Hanssen, S. O. (2008). Building simulation as an assisting tool in decision making Case study: With or without a double-skin façade? Energy and Buildings (40), 821-827. Doi: https://doi. org/10.1016/j.enbuild.2007.05.015 | |
dc.relation | Jentsch, M. F., Bahaj, A. S. y James, P. A. (2008). Climate change future proofing of buildings— Generation and assessment of building simulation weather files. Energy and Buildings, 40(12). 2148-2168. Doi: https://doi. org/10.1016/j.enbuild.2008.06.005 | |
dc.relation | Kim, D.-W. y Park, C.-S. (2011). Difficulties and limitations in performance simulation of a double skin façade with EnergyPlus. Energy and Buildings (43), 3635-3645. Doi: https:// doi.org/10.1016/j.enbuild.2011.09.038 | |
dc.relation | Marinosci, C., Semprini, G. y Morini, G. (2014). Experimental analysis of the summer thermal performances of a naturally ventilated rainscreen façade building. Energy and Buildings (72), 280-287. Doi: http://dx.doi. org/10.1016/j.enbuild.2013.12.044 | |
dc.relation | Marinosci, C., Strachan, P., Semprini, G. y Morini, G. (2011). Empirical validation and modelling of a naturally ventilated rainscreen façade building. Energy and Buildings (43), 853-863. Doi: https://doi.org/10.1016/j. enbuild.2010.12.005 | |
dc.relation | Mateus, N. M., Pinto, A. y Carrilho da Graça, G. (2014). Validation of EnergyPlus thermal simulation of a double skin naturallyand mechanically ventilated test cell. Energy and Buildings (75), 511-522. Doi: http://dx.doi. org/10.1016/j.enbuild.2014.02.043 | |
dc.relation | Meteonorm (22 de 02 de 2018). Meteonorm. Recuperado de http://www.meteonorm.com/ | |
dc.relation | Peci López, F., Jensen, R., Heiselberg, P. y Ruiz de Adana, M. (2012). Experimental analysis and model validation of an opaque ventilated facade. Building and Environment (56), 265- 275. Doi: https://doi.org/10.1016/j.buildenv. 2012.03.017 | |
dc.relation | Poirazis, H. (2004). Double Skin Façades for Office Buildings. Lund: Division of Energy and Building Design Department of Construction and Architecture Lund Institute of Technology, Division of Energy and Building Design. Recuperado de http://www.ebd.lth.se/fileadmin/energi_ byggnadsdesign/images/Publikationer/Bok- EBD-R3-G5_alt_2_Harris.pdf | |
dc.relation | Pyrgou, A., Castaldo, V. L., Pisello, A. L., Cotana, F. y Santamouris, M. (2017). Differentiating responses of weather files and local climate change to explain variations in building thermal- energy performance simulations. Solar Energy (153), 224-237. Doi: http://dx.doi. org/10.1016/j.solener.2017.05.040 | |
dc.relation | Rubiano Martín, M. A. (2015). Ventajas del uso de fachada ventilada, en Giradot (Colombia). Revista Nodo, 10(19), 111-120. Recuperado de http://revistas.uan.edu.co/index.php/ nodo/article/view/538 | |
dc.relation | Stec, W. J., Paassen, A. H. y Maziarz, A. (2005). Modelling the double skin façade with plants. Energy and Buildings (37), 419-427. Doi: https:// doi.org/10.1016/j.enbuild.2004.08.008 | |
dc.relation | Theodosiou, T., Tsikaloudaki, K. y Bikas, D. (2017). Analysis of the thermal bridging effect on ventilated facades. Procedia Environmental Sciences (38), 397-404. Doi: https://doi. org/10.1016/j.proenv.2017.03.121 | |
dc.relation | U.S. Department of Energy (22 de 02 de 2018). energy.gov. Recuperado de https://energy.gov/ | |
dc.relation | Varini, C. (2011). Ecoenvolventes R & D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geo-climatic zones with cultivated native woods and plants. SB Helsinki World Sustainable Building Conference. Helsinki: Finnish Association of Civil Engineers RIL and VTT Technical Research Centre of Finland. Recuperdao de http://www.irbnet.de/daten/ iconda/CIB_DC22949.pdf | |
dc.relation | Varini, C. (2013). Ecoenvelopes R&D. Passive architectural envelopes high thermal performance and low environmental impact for tropical geoclimatic zones. Informes de la Construcción, 65, 23-30. Doi: https://doi. org/10.3989/ic.11.147 | |
dc.relation | Velasco, R. y Robles, D. (2011). Eco-envolventes: A parametric design approach to generate and evaluate façade configurations for hot and humid climates. En T. Zupančič et al. (eds.), eCAADe 2011 Respecting fragile places: Proceedings of the 29th Conference on Education in Computer Aided Architectural Design in Europe (pp. 539-548). Ljubljana: Brussels: Education in Computer Aided Architectural Design in Europe; Ljubljana: Faculty of Architecture. | |
dc.relation | Velasco, R., Hudson, R. y Luciani, S. (2017). Tools and strategies to improve climate-driven façade design in the tropics: A pilot project for Colombia. 12th Conference on Advanced Building Skins (pp. 995-1003). Bern: Advanced Building Skins GmbH. | |
dc.relation | Vernay, D. G., Raphael, B. y Smith, I. F. (2014). Augmenting simulations of airflow around buildings using field measurements. Advanced Engineering Informatics (28), 412-424. Doi: http://dx.doi.org/10.1016/j.aei.2014.06.003 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | Derechos Reservados - Universidad Católica de Colombia, 2018 | |
dc.title | Ecoenvolventes: análisis del uso de fachadas ventiladas en clima cálido-húmedo | |
dc.type | Artículo de revista | |