dc.contributorAyma Quirita, Víctor Hugo
dc.contributorGutiérrez Cárdenas, Juan Manuel
dc.creatorAyma Quirita, Victor Hugo
dc.creatorAyma, V. A.
dc.creatorGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2020-09-18T19:25:02Z
dc.date.available2020-09-18T19:25:02Z
dc.date.created2020-09-18T19:25:02Z
dc.date.issued2020
dc.identifierAyma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
dc.identifierhttps://hdl.handle.net/20.500.12724/11570
dc.identifierhttps://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
dc.identifier0000000121541816
dc.description.abstractNowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.
dc.languageeng
dc.publisherThe International Society for Photogrammetry and Remote Sensing
dc.publisherDE
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectImágenes hiperespectrales
dc.subjectReducción de dimensión (estadísticas)
dc.subjectRedes neuronales (Informática)
dc.subjectHyperspectral Imaging
dc.subjectDimension reduction (statistics)
dc.subjectNeural networks (Computer science)
dc.titleDimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución