dc.contributorGutiérrez Cárdenas, Juan Manuel
dc.contributorQuintana Cruz, Hernán Alejandro
dc.contributorMego Fernandez, Diego
dc.contributorDiaz Baskakov, Serguei
dc.creatorGutiérrez Cárdenas, Juan Manuel
dc.creatorQuintana Cruz, Hernán Alejandro
dc.creatorMego Fernandez, Diego
dc.creatorDiaz Baskakov, Serguei
dc.date.accessioned2019-09-30T14:34:13Z
dc.date.available2019-09-30T14:34:13Z
dc.date.created2019-09-30T14:34:13Z
dc.date.issued2019
dc.identifierGutiérrez-Cárdenas, J., Quintana-Cruz, H., Mego-Fernandez, D., & Diaz-Baskakov, S. (2019). Heuristics Applied to Mutation Testing in an Impure Functional Programming Language. International Journal of Advanced Computer Science and Applications, 10(6), 538-548. http://dx.doi.org/10.14569/IJACSA.2019.0100670
dc.identifier2156-5570
dc.identifierhttps://hdl.handle.net/20.500.12724/9173
dc.identifierInternational Journal of Advanced Computer Science and Applications
dc.identifierhttps://dx.doi.org/10.14569/IJACSA.2019.0100670
dc.identifier0000000121541816
dc.description.abstractThe task of elaborating accurate test suites for program testing can be an extensive computational work. Mutation testing is not immune to the problem of being a computational and time-consuming task so that it has found relief in the use of heuristic techniques. The use of Genetic Algorithms in mutation testing has proved to be useful for probing test suites, but it has mainly been enclosed only in the field of imperative programming paradigms. Therefore, we decided to test the feasibility of using Genetic Algorithms for performing mutation testing in functional programming environments. We tested our proposal by making a graph representations of four different functional programs and applied a Genetic Algorithm to generate a population of mutant programs. We found that it is possible to obtain a set of mutants that could find flaws in test suites in functional programming languages. Additionally, we encountered that when a source code increases its number of instructions it was simpler for a genetic algorithm to find a mutant that can avoid all of the test cases.
dc.languagespa
dc.publisherScience and Information Organization
dc.publisherUK
dc.relationurn:issn:2158-107X
dc.rightshttp://creativecommons.org/licenses/by/2.5/pe/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectProgramación funcional (Informática)
dc.subjectProgramación heurística
dc.subjectFunctional programming (Computer science)
dc.subjectHeuristic programming.
dc.titleHeuristics Applied to Mutation Testing in an Impure Functional Programming Language
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución