dc.creatorFolguera, Laura
dc.creatorZupan, Jure
dc.creatorCicerone, Daniel
dc.creatorMagallanes, Jorge
dc.date2015-03
dc.identifierFolguera, L. et al (2015). Self-Organizing Maps for Imputation of Missing Data in Incomplete Data Matrices. En: Chemometrics and Intelligent Laboratory Systems. Elsevier Science 143, 146-151
dc.identifier0169-7439
dc.identifierhttps://ri.unsam.edu.ar/handle/123456789/1009
dc.descriptionThe problem of incomplete data matrices is repeatedly found in large databases; posing a significant obstacle for an effective treatment of data. This paper examines a self-organizing-map (SOM) based method of data imputation under the concept of distance object per one weight; to predict physicochemical parameters of water samples in a data set where concentrations of different analytes were missed. The method was evaluated according to two different possibilities: (a) including vectors of samples with and without missing data in the training data set and (b) pre-training a SOM for a data set with no missing values and then making imputations for a second data set (prediction set) of samples with missing values. Evaluations were made using a surface water data set of 270 samples from Reconquista River; in Buenos Aires Province; Argentina; by artificially setting a range of 17% to 39% of the data to missing. Results were compared to imputations made through professional criteria. SOMs gave reasonable estimates; with no statistically significant differences from estimates made through professional criteria; proving thus to be a suitable time-saving imputation method.
dc.descriptionFil: Laura Folguera. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina.
dc.descriptionFil: Jure Zupan. National Institute of Chemistry; Ljubljana. Slovenia.
dc.descriptionFil: Daniel Cicerone. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina.
dc.descriptionFil: Jorge Magallanes. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental; Buenos Aires. Argentina.
dc.formatapplication/pdf
dc.formatpp. 146-151
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier Science Bv
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsCreative Commons Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5)
dc.sourceChemometrics and Intelligent Laboratory Systems. 143: 146-151 (2015) Elsevier B.V.
dc.sourcehttp://dx.doi.org/10.1016/j.chemolab.2015.03.002
dc.subjectCHEMOMETRICS
dc.subjectARTIFICIAL NEURAL NETWORK
dc.subjectSELF-ORGANIZING MAPS
dc.subjectMISSING DATA IMPUTATION
dc.subjectENVIRONMENTAL DATA SET
dc.subjectCIENCIAS QUÍMICAS
dc.subjectCIENCIAS EXACTAS Y NATURALES
dc.titleSelf-Organizing Maps for Imputation of Missing Data in Incomplete Data Matrices
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo


Este ítem pertenece a la siguiente institución