dc.contributorHernández Peñaranda, Indira Paola
dc.creatorPrada Prada, Sergio Alfonso
dc.date.accessioned2019-09-02T15:09:30Z
dc.date.available2019-09-02T15:09:30Z
dc.date.created2019-09-02T15:09:30Z
dc.date.issued2019-06-14
dc.identifierT 86.19 P712a
dc.identifierhttps://repositorio.udes.edu.co/handle/001/3721
dc.description.abstractEscherichia coli O157:H7 es el patógeno más común aislado en brotes relacionados con alimentos cárnicos, está directamente asociado con el desarrollo del Síndrome Hemolítico Urémico (SHU) y posee gran capacidad para desarrollar resistencia antimicrobiana. Péptidos Ib-M son análogos de Ib-AMP4 (Derivados de Impatiens balsamina) y han mostrado actividad contra E. coli no patógena. Los péptidos suelen ser susceptibles a ser degradados rápidamente en entornos fisiológicos; el uso de nanopartículas de óxido de hierro recubiertas con quitosano (NpOH@Qui) como moléculas transportadoras los protege del efecto de las proteasas y sus propiedades magnéticas los dirige con mayor especificidad a los órganos blanco. En este estudio se evaluó la actividad contra E. coli O157:H7 y su citotoxicidad en células VERO de péptidos Ib-M y del bioconjugado de péptido Ib-M con nanopartículas de óxido de hierro recubiertas con quitosano (IbM/NpOH@Qui). Para ello, la actividad antibacteriana de los péptidos Ib-M y de IbM/NpOH@Qui se obtuvo al determinar la Concentración Mínima Inhibitoria (CMI), Concentración Mínima Bactericida (CMB), Cinética de Crecimiento y Letalidad. El efecto citotóxico de los compuestos se evaluó por MTT y posteriormente se calculó la Concentración Citotóxica 50 (CC50) e índices de selectividad (IS). La CMI de péptidos Ib-M se obtuvo en un rango de 1,6 a 12,5 μM y la CMB de 3,7 a 22,9μM. Células VERO en presencia de péptidos Ib-M mostraron CC50 en un rango de 197,5 a >400 μM. Ib-M1 fue el péptido seleccionado para ser inmovilizado en la NpOH@Qui. El bioconjugado IbM/NpOH@Qui obtuvo una CMI de 12,5 μM contra E. coli O157:H7 y en células VERO una CC50 >25 μM (357 μg/Ml NpOH@Qui). Los péptidos libres y el bioconjugado presentaron actividad in vitro contra E. coli O157:H7. El Bioconjugado se considera un nanotransportador promisorio que una vez sea perfeccionado podría ser llevado a ensayos de experimentación in vivo.
dc.description.abstractEscherichia coli O157:H7 is the most common pathogen isolated in outbreaks related to meat foods, is directly associated with the development of Hemolytic Uremic Syndrome and has great capacity to develop resistance to antibiotics. Ib-M peptides are analogs of Ib-AMP4 (Derived from Impatiens balsamina) and have shown activity against nonpathogenic E. coli. Peptides are usually susceptible to rapid degradation in physiological environments; the use of iron oxide nanoparticles coated with chitosan (NpOH@Qui) as carrier molecules protects them from the effect of proteases and their magnetic properties direct them with greater specificity to target organs. In this study the activity against E. coli O157: H7 and its cytotoxicity in VERO cells of Ib-M peptides and peptide bioconjugate Ib-M with iron oxide nanoparticles coated with chitosan (IbM/NpOH@Qui) will be evaluated. The antibacterial activity of Ib-M peptides and IbM/NpOH@Qui was obtained by determining the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Growth and Lethality Kinetics. The cytotoxic effect of the compounds was evaluated by MTT and then Cytotoxic Concentration 50 (CC50) and selectivity indexes were calculated. The MIC of peptides Ib-M was obtained in a range of 1.6 to 12.5 μM and the MBC of 3.7 to 22.9 μM. VERO cells in the presence of Ib-M peptides showed CC50 in a range of 197.5 to >400 μM. Ib-M1 was the peptide selected to be immobilized on the NpOH@Qui. The bioconjugate IbM1/NpOH@Qui obtained a CMI of 12.5 μM against E. coli O157: H7 and in VERO cells a CC50 >25 μM (357 μg/mL NpOH@Qui). The free peptides and the bioconjugate showed in vitro activity against E. coli O157:H7. The Bioconjugate is considered a promising nanotransporter that once perfected could be taken to in vivo experimentation trials.
dc.languagespa
dc.publisherFacultad Ciencias de la Salud
dc.publisherMaestría en Investigación en Enfermedades Infecciosas
dc.relationAmmerman. (2009). Vero cell line maintenance. Curr Protoc Microbiol, 1–10. Obtenido de: https://doi.org/10.1002/9780471729259.mca04es11.Growth
dc.relationAnalysis, M., & Alpha, B. (2012). Pruebas post hoc Unidireccional, 1–8. Obtenido de: https://www.scientific-european-federation-osteopaths.org/wp-content/uploads/2019/01/PRUEBAS-POST-HOC.pdf
dc.relationAnaya, P. A. F., Medina, L. M. R., Ugarriza, M. E. O., & Gutiérrez, L. A. L. (2013). Determinación de Escherichia coli e identificación del serotipo O157: H7 en carne de cerdo comercializada en los principales supermercados de la ciudad de Cartagena. Revista Lasallista de Investigacion, 10(1), 91–100.
dc.relationAndrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(suppl 1), 5–16. Obtenido de: https://doi.org/10.1093/jac/48.suppl_1.5
dc.relationAndrews, J. M. (2002). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 49(6), 1049–1049. Obtenido de: https://doi.org/10.1093/jac/dkf083
dc.relationAnne Pereira, H. (2006). Novel Therapies Based on Cationic Antimicrobial Peptides. Current Pharmaceutical Biotechnology, 7(4), 229–234. Obtenido de: https://doi.org/10.2174/138920106777950771
dc.relationAoki, W., & Ueda, M. (2013). Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals, 6(8), 1055–1081. Obtenido de: https://doi.org/10.3390/ph6081055
dc.relationAppenzeller, B. M. R., Yañez, C., Jorand, F., & Block, J. C. (2005). Advantage provided by iron for Escherichia coli growth and cultivability in drinking water. Applied and Environmental Microbiology, 71(9), 5621–5623. Obtenido de: https://doi.org/10.1128/AEM.71.9.5621-5623.2005
dc.relationArakha, M., Pal, S., Samantarrai, D., Panigrahi, T. K., Mallick, B. C., Pramanik, K., Jha, S. (2015). Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports, 5, 1–12. Obtenido de: https://doi.org/10.1038/srep14813
dc.relationArdila N., Ropero J. L., Hernández I. P., Florez J. M. (2019). Immobilization of the Antimicrobial Peptide Ib-M2 over Iron Oxide Nanoparticles and the Evaluation of its Activity against E. coli O157:H7. (Datos por Publicar)
dc.relationArenas, N. E., Abril, D. A., Valencia, P., Khandige, S., Soto, C. Y., & Moreno-Melo, V. (2017). Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia. Tropical Animal Health and Production, 49(4), 739–745. Obtenido de: https://doi.org/10.1007/s11250-017-1251-6
dc.relationSteinberg, D. A., Hurst, M. A., Fujii, C. A., Kung, A. H. C., Ho, J. F., Cheng, F. C., Fiddes, J. C. (1997). Protegrin-1: A broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrobial Agents and Chemotherapy, 41(8), 1738–1742. Obtenido de: https://doi.org/10.1093/jac/dkq040
dc.relationSzalay, B., Tátrai, E., Nyíro, G., Vezér, T., & Dura, G. (2012). Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. Journal of Applied Toxicology, 32(6), 446–453. Obtenido de: https://doi.org/10.1002/jat.1779
dc.relationTaha, M., & Lee, M.-J. (2010). Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: Thermodynamic characterization. Physical Chemistry Chemical Physics, 12(39), 12840. Obtenido de: https://doi.org/10.1039/c0cp00253d
dc.relationTailor, R., Acland, D., Attenborough, S., & Broekaert, W. (1997). A Novel Family of Small Cysteine-rich Antimicrobial Peptides from Seed of. The Journal of Biological Chemistry, 272(39), 24480–24487. Obtenido de: https://doi.org/10.1074/jbc.272.39.24480
dc.relationTam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8(4), 711–757. https://doi.org/10.3390/ph8040711
dc.relationTaute, H., Bester, M. J., Neitz, A. W. H., & Gaspar, A. R. M. (2015). Investigation into the mechanism of action of the antimicrobial peptides Os and Os-C derived from a tick defensin. Peptides, 71, 179–187. Obtenido de: https://doi.org/10.1016/j.peptides.2015.07.017
dc.relationTaylor, A. L., & Thoman, M. S. (1964). Genetic map of Escherichia coli k-12. Genetics, 261(1960), 659–667.
dc.relationTéllez, G. A., & Castaño, J. C. (2010). Péptidos antimicrobianos. Infectio, 14(1), 55–67. Obtenido de: https://doi.org/10.1016/S0123-9392(10)70093-X
dc.relationTenaillon, O., Skurnik, D., Picard, B., & Denamur, E. (2010). The population genetics of commensal Escherichia coli. Nature Reviews Microbiology. Nature Publishing Group. Obtenido de: https://doi.org/10.1038/nrmicro2298
dc.relationBauwens, A., Kunsmann, L., Karch, H., Mellmann, A., & Bielaszewska, M. (2017). Antibiotic-Mediated Modulations of Outer Membrane Vesicles in Enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrobial Agents and Chemotherapy, 61(9), 5–9.
dc.relationKumar, A. (2013). Multifunctional Magnetic Nanoparticles for Targeted Delivery. NIH Public Access, 185(2), 974–981. Obtenido de: https://doi.org/10.1038/mp.2011.182.doi
dc.relationThevissen, K., François, I. E. J. A., Sijtsma, L., Van Amerongen, A., Schaaper, W. M. M., Meloen, R., … Cammue, B. P. A. (2005). Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides, 26(7), 1113–1119. Obtenido de: https://doi.org/10.1016/j.peptides.2005.01.008
dc.relationThomas, S. F., Rooks, P., Rudin, F., Atkinson, S., Goddard, P., Bransgrove, R., … Allen, M. J. (2014). The bactericidal effect of dendritic copper microparticles, contained in an alginate matrix, on Escherichia coli. PLoS ONE, 9(5), 1–7. Obtenido de: https://doi.org/10.1371/journal.pone.0096225
dc.relationTietze, R., Zaloga, J., Unterweger, H., Lyer, S., Friedrich, R. P., Janko, C., Alexiou, C. (2015). Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications, 468(3), 463–470. Obtenido de: https://doi.org/10.1016/j.bbrc.2015.08.022
dc.relationVan Der Weerden, N. L., Bleackley, M. R., & Anderson, M. A. (2013). Properties and mechanisms of action of naturally occurring antifungal peptides. Cellular and Molecular Life Sciences, 70(19), 3545–3570. Obtenido de: https://doi.org/10.1007/s00018-013-1260-1
dc.relationVanegas, M. E., Vázquez, V., Moscoso, D., & Cruzat, C. (2014). Síntesis y caracterización de nanopartículas magnéticas del tipo Fe3O4 / TiO2, efecto del pH en la dispersión y estabilización en soluciones acuosas. Maskana, 5(1), 43–55.
dc.relationVila, J., Sáez-López, E., Johnson, J. R., Römling, U., Dobrindt, U., Cantón, R., … Soto, S. M. (2016). Escherichia coli: An old friend with new tidings. FEMS Microbiology Reviews, 40(4), 437–463. Obtenido de: https://doi.org/10.1093/femsre/fuw005
dc.relationWang, P., Bang, J. K., Kim, H. J., Kim, J. K., Kim, Y., & Shin, S. Y. (2009). Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides, 30(12), 2144–2149. Obtenido de: https://doi.org/10.1016/j.peptides.2009.09.020
dc.relationWiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. Obtenido de: https://doi.org/10.1038/nprot.2007.521
dc.relationWong, C. S., Mooney, J. C., Brandt, J. R., Staples, A. O., Jelacic, S., Boster, D. R., … Tarr, P. I. (2012). Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: A multivariable analysis. Clinical Infectious Diseases, 55(1), 33–41. Obtenido de: https://doi.org/10.1093/cid/cis299
dc.relationWu, M., & Hancock, R. E. W. (1999). Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. Journal of Biological Chemistry, 274(1), 29–35. Obtenido de: https://doi.org/10.1074/jbc.274.1.29
dc.relationKumari, R., Gupta, S., Singh, A. R., Ferosekhan, S., Kothari, D. C., Pal, A. K., & Jadhao, S. B. (2013). Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. PLoS ONE, 8(9), 1–12. Obtenido de: https://doi.org/10.1371/journal.pone.0074743
dc.relationBeauchene, N. A., Mettert, E. L., Moore, L. J., Keleş, S., Willey, E. R., & Kiley, P. J. (2017). O 2 availability impacts iron homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences, 114(46), 12261–12266. Obtenido de: https://doi.org/10.1073/pnas.1707189114
dc.relationWu, W. H., Di, R., & Matthews, K. R. (2013). Antibacterial Mode of Action of Ib-AMP1 Against Escherichia coli O157:H7. Probiotics and Antimicrobial Proteins, 5(2), 131–141. Obtenido de: https://doi.org/10.1007/s12602-013-9127-1
dc.relationYe, L., Pelton, R., Brook, M. A., Filipe, C. D. M., Wang, H., Brovko, L., & Griffiths, M. (2013). Targeted disinfection of E. coli via bioconjugation to photoreactive TiO 2. Bioconjugate Chemistry, 24(3), 448–455. Obtenido de: https://doi.org/10.1021/bc300581t
dc.relationYilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences, 42(SUPPL.2), 1423–1429. Obtenido de: https://doi.org/10.3906/sag-1205-83
dc.relationZhang, L., Levy, K., Trueba, G., Cevallos, W., Trostle, J., Eisenberg, J. N. S., Marrs, C. F. (2015). Effects of Selection Pressure and Genetic Association on the Relationship between Antibiotic Resistance and Virulence in Escherichia coli. Antimicrob Agents Chemother, 59(11), 6733–6740. Obtenido de: https://doi.org/10.1128/AAC.01094-15.Address
dc.relationZimmermann, J., Romesberg, F. E., Brooks, C. L., & Thorpe, I. F. (2010). A Molecular Description of Flexibility in an Antibody Combining Site. NIH Public Access, 119(Pt 24), 5124–5136. Obtenido de: https://doi.org/10.1242/jcs.03292.Multiple
dc.relationBehera, S. S., Patra, J. K., Pramanik, K., Panda, N., & Thatoi, H. (2012). Characterization and Evaluation of Antibacterial Activities of Chemically Synthesized Iron Oxide Nanoparticles. World Journal of Nano Science and Engineering, 02(04), 196–200. Obtenido de: https://doi.org/10.4236/wjnse.2012.24026
dc.relationBennett, J. E., Dolin, R., & Blaser, M. J. (2016). Enfermedades Infecciosas Principios y Práctica.
dc.relationBeri, S., Sidhu, P. K., Kaur, G., Chandra, M., & Rampal, S. (2015). Comparative mutant prevention concentration and antibacterial activity of fluoroquinolones against Escherichia coli in diarrheic buffalo calves. J Chemother, 27(5), 312–316. Obtenido de: https://doi.org/10.1179/1973947814Y.0000000173
dc.relationBielaszewska, M., Idelevich, E. A., Zhang, W., Bauwens, A., Schaumburg, F., & Mellmann, A. (2012). Effects of antibiotics on shiga toxin 2 production and bacteriophage induction byepidemic Escherichia coli O104: H4 strain. Chinese Journal of Infection and Chemotherapy, 12(6), 471. Obtenido de: https://doi.org/10.1128/AAC.06315-11
dc.relationKurioka, T., Yunou, Y., Harada, H., & Kita, E. (1999). Efficacy of antibiotic therapy for infection with Shiga-like toxin-producing Escherichia coli O157:H7 in mice with protein-calorie malnutrition. European Journal of Clinical Microbiology and Infectious Diseases, 18(8), 561–571. Obtenido de: https://doi.org/10.1007/s100960050348
dc.relationBouzari, S., Jafari, A., & Aslani, M. M. (2012). Escherichia coli: A brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iranian Journal of Microbiology, 4(3), 102–117.
dc.relationBoyles, M. S. P., Kristl, T., Andosch, A., Zimmermann, M., Tran, N., Casals, E., Duschl, A. (2015). Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology, 13(1), 84. Obtenido de: https://doi.org/10.1186/s12951-015-0146-9
dc.relationBrauner, A., Shoresh, N., Fridman, O., & Balaban, N. Q. (2017). An Experimental Framework for Quantifying Bacterial Tolerance. Biophysical Journal, 112(12), 2664–2671. Obtenido de: https://doi.org/10.1016/j.bpj.2017.05.014
dc.relationBrudzynski, K., & Sjaarda, C. (2015). Honey glycoproteins containing antimicrobial peptides, jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLoS ONE, 10(4), 1–21. Obtenido de: https://doi.org/10.1371/journal.pone.0120238
dc.relationBruno, B. J., Miller, G. D., & Lim, C. S. (2013). Basics and recent advances in peptide and protein drug delivery. NIH Public Access, 4(11), 1443–1467. Obtenido de: https://doi.org/10.4155/tde.13.104
dc.relationBruyand, M., Mariani-Kurkdjian, P., Gouali, M., de Valk, H., King, L. A., Le Hello, S., Loirat, C. (2017). Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Médecine et Maladies Infectieuses. Obtenido de: https://doi.org/10.1016/j.medmal.2017.09.012
dc.relationCampos, M., Govers, S. K., Irnov, I., Dobihal, G. S., Cornet, F., & Jacobs-Wagner, C. (2018). Genomewide phenotypic analysis of growth, cell morphogenesis, and cell cycle events in Escherichia coli. Molecular Systems Biology, 14(6), e7573. Obtenido de: https://doi.org/10.15252/msb.20177573
dc.relationCaprioli, A., Scavia, G., & Morabito, S. (2013). Public Health Microbiology of Shiga Toxin-Producing Escherichia coli. Microbiology Spectrum, (3), 1–12. Obtenido de: https://doi.org/10.1128/microbiolspec.EHEC
dc.relationChan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. Obtenido de: https://doi.org/10.1016/j.bbamem.2006.04.006
dc.relationCharan, J., Mulla, S., & Panvala, T. (2012). Antibiotic sensitivity of Enterobacteriaceae at a tertiary care center in India. Chronicles of Young Scientists, 2(4), 214. Obtenido de: https://doi.org/10.4103/2229-5186.93028
dc.relationLee, D. G., Shin, S. Y., Kim, D. H., Seo, M. Y., Kang, J. H., Lee, Y., … Hahm, K. S. (1999). Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans. Biotechnology Letters, 21(12), 1047–1050. Obtenido de: https://doi.org/10.1023/A:1005636610512
dc.relationChen, L. (2013). SURFACE FUNCTIONALIZATION AND BIOCONJUGATION OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS School of Graduate and Postdoctoral Studies The thesis by, (March).
dc.relationChidamba, L., & Korsten, L. (2015). Antibiotic resistance in Escherichia coli isolates from roof-harvested rainwater tanks and urban pigeon faeces as the likely source of contamination. Environmental Monitoring and Assessment, 187(7). Obtenido de: https://doi.org/10.1007/s10661-015-4636-x
dc.relationChikezie, I. O. (2017). Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a novel dilution tube method. African Journal of Microbiology Research, 11(23), 977–980. Obtenido de: https://doi.org/10.5897/ajmr2017.8545
dc.relationChomoucka, J., Drbohlavova, J., Huska, D., Adam, V., Kizek, R., & Hubalek, J. (2010). Magnetic nanoparticles and targeted drug delivering. Pharmacological Research, 62(2), 144–149. Obtenido de: https://doi.org/10.1016/j.phrs.2010.01.014
dc.relationCLSI. (1999). Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline (Vol. 19).
dc.relationCLSI. (2012). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard — Ninth Edition. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standar- Ninth Edition (Vol. 32). Obtenido de: https://doi.org/10.4103/0976-237X.91790
dc.relationCobbold, R. N., Rice, D. H., Szymanski, M., Call, D. R., & Hancock, D. D. (2004). Comparison of shiga-toxigenic Escherichia coli prevalences among dairy, feedlot, and cow-calf herds in Washington State. Applied and Environmental Microbiology, 70(7), 4375–4378. Obtenido de: https://doi.org/10.1128/AEM.70.7.4375-4378.2004
dc.relationCohen, P. S., & Conway, T. (2015). Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiology Spectrum, 3(3). Obtenido de: https://doi.org/10.1128/microbiolspec.MBP-0006-2014.Commensal
dc.relationColavecchio, A., Cadieux, B., Lo, A., & Goodridge, L. D. (2017). Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family - A review. Frontiers in Microbiology, 8(JUN), 1–13. Obtenido de: https://doi.org/10.3389/fmicb.2017.01108
dc.relationCordeiro, R. P., Krause, D. O., Doria, J. H., & Holley, R. A. (2014). Role of the BaeSR two-component regulatory system in resistance of Escherichia coli O157: H7 to allyl isothiocyanate. Food Microbiology, 42, 136–141. Obtenido de: https://doi.org/10.1016/j.fm.2014.03.011
dc.relationLee, J. H., Minn, I., Park, C. B., & Kim, S. C. (1998). Acidic peptide-mediated expression of the antimicrobial peptide buforin. Protein Expression and Purification, 12(1), 53–60. Obtenido de: https://doi.org/10.1006/prep.1997.0814
dc.relationCornejo-monroy, D. (2018). Preparación y bioconjugación de nanocorazas metálicas con actividad en el infrarrojo cercano, (March). Obtenido de: https://doi.org/10.13140/RG.2.2.27210.88008
dc.relationCorogeanu, D., Willmes, R., Wolke, M., Plum, G., Utermöhlen, O., & Krönke, M. (2012). Therapeutic concentrations of antibiotics inhibit Shiga toxin release from enterohemorrhagic E. coli O104:H4 from the 2011 German outbreak. BMC Microbiology, 12. Obtenido de: https://doi.org/10.1186/1471-2180-12-160
dc.relationCraig S. Wong, Jelacic, S., Habeeb, R. L., Watkins, S. L., & Tarr, P. I. (2000). The risk of hemolytic-uremic syndrome. NIH Public Access, 342(26), 1930–1936. Obtenido de: https://doi.org/10.1056/NEJM200006293422601.THE
dc.relationCree, I. A. (2011). Cancer Cell Culture methods and protocols. Methods in molecular biology (Clifton, N.J.) (Vol. 731). Obtenido de: https://doi.org/10.1007/978-1-61779-080-5
dc.relationCuriao, T., Marchi, E., Viti, C., Oggioni, M. R., Baquero, F., Martinez, J. L., & Coque, T. M. (2015). Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics. Antimicrobial Agents and Chemotherapy, 59(6), 3413–3423. Obtenido de: https://doi.org/10.1128/aac.00187-15
dc.relationDe Lucca, A. J., Jacks, T. J., & Broekaert, W. J. (1998). Fungicidal and binding properties of three plant peptides. Mycopathologia, 144(2), 87–91. Obtenido de: https://doi.org/10.1023/A:1007018423603
dc.relationDomínguez, E., Zarazaga, M., Sáenz, Y., Briñas, L., & Torres, C. (2002). Mechanisms of Antibiotic Resistance in Escherichia coli Isolates Obtained from Healthy Children in Spain. Microbial Drug Resistance, 8(4), 321–327. Obtenido de: https://doi.org/10.1089/10766290260469589
dc.relationEgan, A. J. F., Cleverley, R. M., Peters, K., Lewis, R. J., & Vollmer, W. (2017). Regulation of bacterial cell wall growth. The FEBS Journal, 284(6), 851–867. Obtenido de: https://doi.org/10.1111/febs.13959
dc.relationElieh-Ali-Komi, D., & Hamblin, M. R. (2016). Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. HHS Public Access, 118(24), 6072–6078. Obtenido de: https://doi.org/10.1002/cncr.27633.Percutaneous
dc.relationErb, A., Stürmer, T., Marre, R., & Brenner, H. (2007). Prevalence of antibiotic resistance in Escherichia coli: Overview of geographical, temporal, and methodological variations. European Journal of Clinical Microbiology and Infectious Diseases, 26(2), 83–90. Obtenido de: https://doi.org/10.1007/s10096-006-0248-2
dc.relationLee, M. S., Koo, S., Jeong, D. G., & Tesh, V. L. (2016). Shiga toxins as multi-functional proteins: Induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins, 8(3), 1–23. Obtenido de: https://doi.org/10.3390/toxins8030077
dc.relationFan, X., Schäfer, H., Reichling, J., & Wink, M. (2013). Bactericidal properties of the antimicrobial peptide Ib-AMP4 from Impatiens balsamina produced as a recombinant fusion-protein in Escherichia coli. Biotechnology Journal, 8(10), 1213–1220. Obtenido de: https://doi.org/10.1002/biot.201300121
dc.relationFarfán-garcía, A. E., Ariza-rojas, S. C., Andrea, F., Lizeth, V., & Farfán-garcía, A. E. (2016). Mecanismos de virulencia de Escherichia coli enteropatógena. Rev Chilena Infecto, 33(4), 438–450. Obtenido de: https://doi.org/10.4067/S0716-10182016000400009
dc.relationFarkaš, P., & Bystrický, S. (2010). Chemical conjugation of biomacromolecules: A mini-review. Chemical Papers, 64(6), 683–695. Obtenido de: https://doi.org/10.2478/s11696-010-0057-z
dc.relationFattal, E. (2002). Nanoparticles As Drug Delivery Systems, 7(12), 18–21.
dc.relationFink, R. C., Black, E. P., Hou, Z., Sugawara, M., Sadowsky, M. J., & Diez-Gonzaleza, F. (2012). Transcriptional responses of Escherichia coli K-12 and O157: H7 associated with lettuce leaves. Applied and Environmental Microbiology, 78(6), 1752–1764. Obtenido de: https://doi.org/10.1128/AEM.07454-11
dc.relationFlórez-Castillo, J. M., Perullini, M., Jobbágy, M., & De Jesús Cano Calle, H. (2014). Enhancing antibacterial activity against Escherichia coli K-12 of peptide Ib-AMP4 with synthetic analogues. International Journal of Peptide Research and Therapeutics, 20(3), 365–369. Obtenido de: https://doi.org/10.1007/s10989-014-9391-2
dc.relationForde, É., Shafiy, G., Fitzgerald-Hughes, D., Strömstedt, A. A., & Devocelle, M. (2018). Action of antimicrobial peptides and their prodrugs on model and biological membranes. Journal of Peptide Science, 24(7), 1–8. Obtenido de: https://doi.org/10.1002/psc.3086
dc.relationFrecer, V., Ho, B., & Ding, J. (2004). De novo design of potent antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 48(9), 3349–3357. Obtenido de: https://doi.org/10.1128/AAC.48.9.3349
dc.relationFutaki, S., Hirose, H., & Nakase, I. (2013). Arginine-rich Peptides: Methods of Translocation Through Biological Membranes. Current Pharmaceutical Design, 19(16), 2863–2868. Obtenido de: https://doi.org/10.2174/1381612811319160003
dc.relationFux, C. A., Shirtliff, M., Stoodley, P., & Costerton, J. W. (2005). Can laboratory reference strains mirror “real-world” pathogenesis? Trends in Microbiology, 13(2), 58–63. Obtenido de: https://doi.org/10.1016/j.tim.2004.11.001
dc.relationLee, W. X., Basri, D. F., Ghazali, A. R., & Jeandet, P. (2017). Bactericidal effect of pterostilbene alone and in combination with gentamicin against human pathogenic bacteria. Molecules, 22(3). Obtenido de: https://doi.org/10.3390/molecules22030463
dc.relationGao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., … Yan, X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9), 577–583. Obtenido de: https://doi.org/10.1038/nnano.2007.260
dc.relationGao, W., Lai, J. C. K., & Leung, S. W. (2012). Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Frontiers in Physiology, 3 AUG(August), 1–13. Obtenido de: https://doi.org/10.3389/fphys.2012.00321
dc.relationGarrido García Julio, I. (2016). Máster en ciencias analíticas y bioanalíticas. Trabajo Fin de Máster Síntesis y bioconjugación de nanoclústeres fluorescentes de cobre para la determinación de Metalotioneína I y II y su aplicación en tejidos cancerosos.
dc.relationGaspar, D., Salomé Veiga, A., & Castanho, M. A. R. B. (2013). From antimicrobial to anticancer peptides. A review. Frontiers in Microbiology, 4(OCT), 1–16. Obtenido de: https://doi.org/10.3389/fmicb.2013.00294
dc.relationGautier, A., & Hinner, M. J. (2015). Site-Specific Protein Labeling: Methods and Protocols. Site-Specific Protein Labeling: Methods and Protocols. Obtenido de: https://doi.org/10.1007/978-1-4939-2272-7
dc.relationGhaz-Jahanian, M. A., Abbaspour-Aghdam, F., Anarjan, N., Berenjian, A., & Jafarizadeh-Malmiri, H. (2015). Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery. Molecular Biotechnology, 57(3), 201–218. Obtenido de: https://doi.org/10.1007/s12033-014-9816-3
dc.relationGiuliani, A., Pirri, G., & Nicoletto, S. F. (2007). Antimicrobial peptides: An overview of a promising class of therapeutics. Central European Journal of Biology (Vol. 2). Obtenido de: https://doi.org/10.2478/s11535-007-0010-5
dc.relationGómez-duarte, O. G. (2011). Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia. NIH Public Access, 138(3), 282–286. Obtenido de: https://doi.org/10.1016/j.ijfoodmicro.2010.01.034.Molecular
dc.relationGómez-Duarte, O. G. (2014). Enfermedad diarreica aguda por Escherichia coli enteropatógenas en Colombia. Rev Chilena Infectol, 31(5), 577–586. Obtenido de: https://doi.org/10.4067/S0716-10182014000500010.Enfermedad
dc.relationGómez-Duarte, O. G., Arzuza, O., Urbina, D., Bai, J., Guerra, J., Montes, O., … Castro, G. Y. (2010). Detection of Escherichia coli Enteropathogens by Multiplex Polymerase Chain Reaction from Children’s Diarrheal Stools in Two Caribbean–Colombian Cities. Foodborne Pathogens and Disease, 7(2), 199–206. Obtenido de: https://doi.org/10.1089/fpd.2009.0355
dc.relationLeón-Calvijo, M. A., Leal-Castro, A. L., Almanzar-Reina, G. A., Rosas-Pérez, J. E., García-Castañeda, J. E., & Rivera-Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015, 1DUMMY. Obtenido de: https://doi.org/10.1155/2015/453826
dc.relationGoto, D. K., & Yan, T. (2011). Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii. Applied and Environmental Microbiology, 77(12), 3988–3997. Obtenido de: https://doi.org/10.1128/aem.02140-10
dc.relationGottler, L. M., & Ramamoorthy, A. (2013). Structure, Membrane Orientation, Mechanism, and Function of Pexiganan – A Highly Potent Antimicrobial Peptide Designed From Magainin. NIH Public Access, 185(2), 974–981. Obtenido de: https://doi.org/10.1038/mp.2011.182.doi
dc.relationGoyal, R. K., & Mattoo, A. K. (2016). Plant antimicrobial peptides. Host Defense Peptides and Their Potential as Therapeutic Agents, 111–136. Obtenido de: https://doi.org/10.1007/978-3-319-32949-9_5
dc.relationGuest, R. L., & Raivio, T. L. (2016). Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends in Microbiology, 24(5), 377–390. Obtenido de: https://doi.org/10.1016/j.tim.2016.03.001
dc.relationHaberbeck, L. U., Oliveira, R. C., Vivijs, B., Wenseleers, T., Aertsen, A., Michiels, C., & Geeraerd, A. H. (2015). Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75 % have a higher growth probability under low pH conditions than E. coli O157: H7 strain ATCC 43888. Food Microbiology, 45(PB), 222–230. Obtenido de: https://doi.org/10.1016/j.fm.2014.06.024
dc.relationHartl, D. (1984). The Population Genetics of Escherichia coli. Annual Review of Genetics, 18(1), 31–68. Obtenido de: https://doi.org/10.1146/annurev.genet.18.1.31
dc.relationHemp-, H., Approaches, G., Halla, N., Fernandes, I. P., Heleno, S. A., Costa, P., … Mahenthiralingam, E. (2018). 1-s2.0-S0076687999100089-main. Journal of Applied Microbiology, 40(3), 276–284. Obtenido de: https://doi.org/10.1111/ics.12461
dc.relationHermanson, G. T. (2008). Bioconjugate Techniques. Bioconjugate Chemistry (Vol. 3).
dc.relationHernandes, C., Coppede, J. da S., Bertoni, B. W., França, S. de C., & Pereira, A. M. S. (2013). Flash microbiocide: A Rapid and Economic Method for Determination of MBC and MFC. American Journal of Plant Sciences, 04(04), 850–852. Obtenido de: https://doi.org/10.4236/ajps.2013.44104
dc.relationHuang, J., Jiang, H., Qiu, M., Geng, X., Yang, R., Li, J., & Zhang, C. (2013). Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus. International Journal of Biological Macromolecules, 52(1), 85–91. Obtenido de: https://doi.org/10.1016/j.ijbiomac.2012.10.017
dc.relationLi, C. L., Xu, T. T., Chen, R. B., Huang, X. X., Zhao, Y. C., Bao, Y. Y., … Zheng, Z. Y. (2013). Cloning, expression and characterization of antimicrobial porcine β defensin 1 in Escherichia coli. Protein Expression and Purification, 88(1), 47–53. Obtenido de: https://doi.org/10.1016/j.pep.2012.11.015
dc.relationHuber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5), 482–501. Obtenido de: https://doi.org/10.1002/smll.200500006
dc.relationIllarruel-lopez, A. V. (2012). E. coli 0157:H7 and Staphylococcal Enterotoxin in Two Types of Mexican Fresh Cheeses, 75(1), 79–84. Obtenido de: https://doi.org/10.4315/0362-028X.JFP-11
dc.relationImura, Y., Choda, N., & Matsuzaki, K. (2008). Magainin 2 in action: Distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophysical Journal, 95(12), 5757–5765. Obtenido de: https://doi.org/10.1529/biophysj.108.133488
dc.relationIzadpanah, A., & Gallo, R. L. (2005). Antimicrobial peptides. Journal of the American Academy of Dermatology, 52(3), 381–390. Obtenido de: https://doi.org/10.1016/j.jaad.2004.08.026
dc.relationJafari, A., Aslani, M. M., & Bouzari, S. (2012). Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iranian Journal of Microbiology, 4(3), 102–117. Obtenido de: http://www.ncbi.nlm.nih.gov/pubmed/23066484%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3465535
dc.relationJaveriano, C. de E. (2007). Javeriano. Manual Normas APA Sexta Edición, 3–23. Obtenido de: http://portales.puj.edu.co/ftpcentroescritura/Recursos C.E/Estudiantes/Tipos de texto/Recurso Ensayo-CEJ.pdf
dc.relationJenkins, S. G., & Schuetz, A. N. (2012). Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clinic Proceedings, 87(3), 290–308. Obtenido de: https://doi.org/10.1016/j.mayocp.2012.01.007
dc.relationJiang, Z., Vasil, A. I., Vasil, M. L., & Hodges, R. S. (2014). “Specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin S4 against the gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals, 7(4), 366–391. Obtenido de: https://doi.org/10.3390/ph7040366
dc.relationKalia, J., & Raines, R. T. (2010). Advances in Bioconjugation Jeet. NIH Public Access, 119(Pt 24), 5124–5136. Obtenido de: https://doi.org/10.1242/jcs.03292.Multiple
dc.relationKandi, V., & Kandi, S. (2015). Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiology and Health, 37, e2015020. Obtenido de: https://doi.org/10.4178/epih/e2015020
dc.relationLi, G. yin, Jiang, Y. ren, Huang, K. long, Ding, P., & Chen, J. (2008). Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Compounds, 466(1–2), 451–456. Obtenido de: https://doi.org/10.1016/j.jallcom.2007.11.100
dc.relationKang, S. J., Park, S. J., Mishig-Ochir, T., & Lee, B. J. (2014). Antimicrobial peptides: Therapeutic potentials. Expert Review of Anti-Infective Therapy, 12(12), 1477–1486. Obtenido de: https://doi.org/10.1586/14787210.2014.976613
dc.relationKilinc, Y. B., Akdeste, Z. M., Koc, R. C., Bagirova, M., & Allahverdiyev, A. (2014). Synthesis and characterization of antigenic influenza A M2e protein Peptide-Poly(Acrylic) acid bioconjugate and determination of toxicity in vitro. Bioengineered Bugs, 5(6), 357–362. Obtenido de: https://doi.org/10.4161/21655979.2014.969131
dc.relationKIM, S.-J., PARK, H. W., SHIN, C.-H., & KIM, C.-W. (2009). Establishment of a Cryopreservation Method for the Industrial Use of D-Amino Acid Oxidase-Overexpressing Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 73(2), 299–303. Obtenido de: https://doi.org/10.1271/bbb.80507
dc.relationKöhler, C. D., & Dobrindt, U. (2011). What defines extraintestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, 301(8), 642–647. Obtenido de: https://doi.org/10.1016/j.ijmm.2011.09.006
dc.relationKouchesfehani, H. M., Kiani, S., Rostami, A. A., & Fakheri, R. (2013). Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay. Iranian Journal of Toxicology, 7(21 Obtenido de: http://www.ijt.ir
dc.relationArthur, T. M., Brichta-Harhay, D. M., Bosilevac, J. M., Kalchayanand, N., Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2010). Super shedding of Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. Meat Science, 86(1), 32–37. Obtenido de: https://doi.org/10.1016/j.meatsci.2010.04.019
dc.relationLi, J., Xie, S., Ahmed, S., Wang, F., Gu, Y., Zhang, C., … Cheng, G. (2017). Antimicrobial activity and resistance: Influencing factors. Frontiers in Pharmacology, 8(JUN), 1–11. Obtenido de: https://doi.org/10.3389/fphar.2017.00364
dc.relationLi, N., Tan, S., Cui, J., Guo, N., Wang, W., Zu, Y., … Fu, Y. (2014). PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. The Journal of Antibiotics, 67(10), 689–696. Obtenido de: https://doi.org/10.1038/ja.2014.49
dc.relationLee, W. X., Basri, D. F., Ghazali, A. R., & Jeandet, P. (2017). Bactericidal effect of pterostilbene alone and in combination with gentamicin against human pathogenic bacteria. Molecules, 22(3). https://doi.org/10.3390/molecules22030463
dc.relationLianou, A., & Koutsoumanis, K. P. (2013). Strain variability of the behavior of foodborne bacterial pathogens: A review. International Journal of Food Microbiology, 167(3), 310–321. Obtenido de: https://doi.org/10.1016/j.ijfoodmicro.2013.09.016
dc.relationLim, J. Y., Yoon, J., & Hovde, C. J. (2010). A brief overview of Escherichia coli O157:H7 and its plasmid O157. Journal of Microbiology and Biotechnology, 20(1), 5–14. Obtenido de: https://doi.org/10.4014/jmb.0908.08007
dc.relationLiterak, I., Petro, R., Dolejska, M., Gruberova, E., Dobiasova, H., Petr, J., & Cizek, A. (2011). Antimicrobial resistance in fecal Escherichia coli isolates from healthy urban children of two age groups in relation to their antibiotic therapy. Antimicrobial Agents and Chemotherapy, 55(6), 3005–3007. Obtenido de: https://doi.org/10.1128/AAC.01724-10
dc.relationMaisetta, G., Grassi, L., Esin, S., Serra, I., Scorciapino, M. A., Rinaldi, A. C., & Batoni, G. (2017). The semi-synthetic peptide Lin-SB056-1 in combination with EDTA exerts strong antimicrobial and antibiofilm activity against pseudomonas aeruginosa in conditions mimicking cystic fibrosis sputum. International Journal of Molecular Sciences, 18(9), 1–18. Obtenido de: https://doi.org/10.3390/ijms18091994
dc.relationMajowicz, S. E., Scallan, E., Jones-Bitton, A., Sargeant, J. M., Stapleton, J., Angulo, F. J., … Kirk, M. D. (2014). Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathogens and Disease, 11(6), 447–455. Obtenido de: https://doi.org/10.1089/fpd.2013.1704
dc.relationMalanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta - Biomembranes, 1858(5), 936–946. Obtenido de: https://doi.org/10.1016/j.bbamem.2015.11.004
dc.relationMandell, Douglas, & Bennett. (2016). Enfermedades infecciosas. Principios y práctica (8va ed.).
dc.relationAssa, F., Jafarizadeh-Malmiri, H., Ajamein, H., Vaghari, H., Anarjan, N., Ahmadi, O., & Berenjian, A. (2017). Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, 37(4), 492–509. Obtenido de: https://doi.org/10.1080/07388551.2016.1185389
dc.relationMartin, C., Waghela, S. D., Lokhandwala, S., Ambrus, A., Bray, J., Vuong, C., … Mwangi, W. (2017). Characterization of a broadly reactive anti-CD40 agonistic monoclonal antibody for potential use as an adjuvant. PLoS ONE, 12(1), 1–17. Obtenido de: https://doi.org/10.1371/journal.pone.0170504
dc.relationMartínez, A. J., Bossio, C. P., Durango, A. C., & Vanegas, M. C. (2007). Characterization of Shiga toxigenic Escherichia coli isolated from foods. Journal of Food Protection, 70(12), 2843–2846.
dc.relationMatsuzaki, K., Sugishita, K., Harada, M., Fujii, N., & Miyajima, K. (1997). Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochimica et Biophysica Acta 1327, 119–130. Obtenido de: https://doi.org/10.1016/j.toxicon.2004.07.020
dc.relationMattar, S., & Vásquez, E. (1998). Escherichia coli O157: H7 infection in Colombia. Emerging Infectious Diseases, 4(1), 126–127. Obtenido de: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627671/
dc.relationMeletiadis, J., Meis, J. F., Mouton, J. W., Donnelly, J. P., & Verweij, P. E. (2000). Comparison of NCCLS and 3-(4,5-dimethyl-2-Thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. Journal of Clinical Microbiology, 38(8), 2949–2954.
dc.relationMilletti, F. (2012). Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discovery Today, 17(15–16), 850–860. Obtenido de: https://doi.org/10.1016/j.drudis.2012.03.002
dc.relationMir, R. A., & Kudva, I. T. (2019). Antibiotic-resistant Shiga toxin-producing Escherichia coli: An overview of prevalence and intervention strategies. Zoonoses and Public Health, 66(1), 1–13. Obtenido de: https://doi.org/10.1111/zph.12533
dc.relationMohamed, M. F., Hammac, G. K., Guptill, L., & Seleem, M. N. (2014). Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs. PloS One, 9(12), e116259. Obtenido de: https://doi.org/10.1371/journal.pone.0116259
dc.relationMoravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moosazadeh Moghaddam, M., & Mirnejad, R. (2018). Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microbial Drug Resistance, 24(6), 747–767. Obtenido de: https://doi.org/10.1089/mdr.2017.0392
dc.relationMosmann, T. (1983). Rapid colorimetric assay for cellular growth and cytotoxicity assays. J Immunol Methods, 65, 55–63. Obtenido de: https://ac.els-cdn.com/0022175983903034/1-s2.0-0022175983903034-main.pdf?_tid=6d7ba05f-1dac-4ca6-922c-e999b7d36049&acdnat=1552233279_6fb05200ed054b5cada16d8984096366
dc.relationAuffan, M., Achouak, W., Rose, J., Roncato, M., Chane, C., Waite, D. T., E, C. C. (2008). Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environmental Science & Technology, 42(17), 6730–6735. Obtenido de: https://doi.org/10.1021/es800086f
dc.relationMosquito, S., Ruiz, J., Bauer, J. L., & Ochoa, T. J. (2011). Mecanismos moleculares de resistencia antibiotica en Escherichia coli asociadas a diarrea. Revista Peruana de Medicina Experimental y Salud Publica, 28(4), 648–656. Obtenido de: https://doi.org/10.1590/S1726-46342011000400013
dc.relationMoyo. (2012). Antimicrobial activities of Moringa oleifera Lam leaf extracts. African Journal of Biotechnology, 11(11), 2797–2802. Obtenido de: https://doi.org/10.5897/AJB10.686
dc.relationMuñoz-Camargo, C., Salazar, V. A., Barrero-Guevara, L., Camargo, S., Mosquera, A., Groot, H., & Boix, E. (2018). Unveiling the multifaceted mechanisms of antibacterial activity of buforin II and frenatin 2.3S peptides from skin micro-organs of the orinoco lime treefrog (Sphaenorhynchus lacteus). International Journal of Molecular Sciences, 19(8). Obtenido de: https://doi.org/10.3390/ijms19082170
dc.relationMykhaylyk, O., Antequera, Y. S., Vlaskou, D., & Plank, C. (2007). Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nature Protocols, 2(10), 2391–2411. Obtenido de: https://doi.org/10.1038/nprot.2007.352
dc.relationNandaKafle, G., Christie, A. A., Vilain, S., & Brözel, V. S. (2018). Growth and extended survival of Escherichia coli O157: H7 in soil organic matter. Frontiers in Microbiology, 9(APR), 1–11. Obtenido de: https://doi.org/10.3389/fmicb.2018.00762
dc.relationNarváez-bravo, C. A., Carruyo-núñez, G., Moreno, M., Rodas-gonzález, A., & Hoet, A. E. (2007). Aislamiento de Escherichia coli 0157:H7 en Muestras de HEces de Ganado Bovino Doble Propósito del Municipio Miranda, Estado Zulia, Venezuela. Revista Cientifica, XVII, 239–245.
dc.relationNataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11(1), 142–201. Obtenido de: https://doi.org/file://Z:\References\TextFiles\00000004472.txt
dc.relationNauta, M. J., & Dufrenne, J. B. (2000). Variability in Growth Characteristics of Different E. coli O157:H7 Isolates, and its Implications for Predictive Microbiology. Quantitative Microbiology, (Usda 1998), 137–155.
dc.relationNehra, P., Chauhan, R. P., Garg, N., & Verma, K. (2018). Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. British Journal of Biomedical Science, 75(1), 13–18. Obtenido de: https://doi.org/10.1080/09674845.2017.1347362
dc.relationOchoa, T. J., Chen, J., Walker, C. M., Gonzales, E., & Cleary, T. G. (2007). Rifaximin does not induce toxin production or phage-mediated lysis of shiga toxin-producing Escherichia coli. Antimicrobial Agents and Chemotherapy, 51(8), 2837–2841. Obtenido de: https://doi.org/10.1128/AAC.01397-06
dc.relationBagla, V. P., McGaw, L. J., Elgorashi, E. E., & Eloff, J. N. (2014). Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complementary and Alternative Medicine, 14(1), 2–7. Obtenido de: https://doi.org/10.1186/1472-6882-14-383
dc.relationOchoa, T. J., Ruiz, J., Molina, M., Del Valle, L. J., Vargas, M., Gil, A. I., … Lanata, C. F. (2009). High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. The American Journal of Tropical Medicine and Hygiene, 81(2), 296–301. Obtenido de: https://doi.org/10.1038/nature13314.A
dc.relationOliveira, P. L. de, Paula, C. S., Rocha, L. D., Collares, G. B., Franco, R. T., Silva, C. P., … Magalhães, P. P. (2017). Antimicrobial susceptibility profile of enterotoxigenic and enteropathogenic Escherichia coli isolates obtained from fecal specimens of children with acute diarrhea. Jornal Brasileiro de Patologia e Medicina Laboratorial, (April), 115–118. Obtenido de: https://doi.org/10.5935/1676-2444.20170019
dc.relationPal, A., Talukdar, D., Roy, A., Ray, S., Mallick, A., Mandal, C., & Ray, M. (2015). Nanofabrication of methylglyoxal with chitosan biopolymer: A potential tool for enhancement of its anticancer effect. International Journal of Nanomedicine, 10, 3499–3518. Obtenido de: https://doi.org/10.2147/IJN.S78284
dc.relationPankey, G. A., & D., S. L. (2004). Clinical Relevance of Bacteriostatic versus Bactericidal Activity in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases, 39(5), 755–756. Obtenido de: https://doi.org/10.1086/422881
dc.relationPanos, G. Z., Betsi, G. I., & Falagas, M. E. (2006). Systematic review: Are antibiotics detrimental or beneficial for the treatment of patients with Escherichia coli O157:H7 infection? Alimentary Pharmacology and Therapeutics, 24(5), 731–742. Obtenido de: https://doi.org/10.1111/j.1365-2036.2006.03036.x
dc.relationPapareddy, P., M??rgelin, M., Walse, B., Schmidtchen, A., & Malmsten, M. (2012). Antimicrobial activity of peptides derived from human ??-amyloid precursor protein. Journal of Peptide Science, 18(3), 183–191. Obtenido de: https://doi.org/10.1002/psc.1439
dc.relationPark, A. J., Okhovat, J. P., & Kim, J. (2017). Antimicrobial peptides. Clinical and Basic Immunodermatology: Second Edition, 1548, 81–95. Obtenido de: https://doi.org/10.1007/978-3-319-29785-9_6
dc.relationPark, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, 244(1), 253–257. Obtenido de: https://doi.org/10.1006/bbrc.1998.8159
dc.relationPatel, S. U., Osborn, R., Rees, S., & Thornton, J. M. (1998). Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry, 37(4), 983–990. Obtenido de: https://doi.org/10.1021/bi971747d
dc.relationPeng, X. H., Qian, X., Mao, H., Wang, a Y., Chen, Z. G., Nie, S., & Shin, D. M. (2008). Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 3(3), 311–321. Obtenido de: https://doi.org/10.5772/22873
dc.relationBajpai, V. K., Na, M., & Kang, S. C. (2010). The role of bioactive substances in controlling foodborne pathogens derived from Metasequoia glyptostroboides Miki ex Hu. Food and Chemical Toxicology, 48(7), 1945–1949. Obtenido de: https://doi.org/10.1016/j.fct.2010.04.041
dc.relationPitout, J. D. (2012). Extraintestinal pathogenic Escherichia coli: An update on antimicrobial resistance, laboratory diagnosis and treatment. Expert Review of Anti-Infective Therapy, 10(10), 1165–1176. Obtenido de: https://doi.org/10.1586/eri.12.110
dc.relationPletnev, P., Osterman, I., Sergiev, P., Bogdanov, A., & Dontsova, O. (2015). Survival guide: Escherichia coli in the stationary phase. Acta Naturae.
dc.relationPrada, Y. A., Guzmán, F., Ortíz, C., Cabanzo, R., Torres, R., & Mejía-Ospino, E. (2019). New Synthetic Peptides Conjugated to Gold Nanoclusters: Antibiotic Activity Against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). The Protein Journal, (0123456789). Obtenido de: https://doi.org/10.1007/s10930-019-09840-9
dc.relationPridmore, A., Burch, D., & Lees, P. (2011). Determination of minimum inhibitory and minimum bactericidal concentrations of tiamulin against field isolates of Actinobacillus pleuropneumoniae. Veterinary Microbiology, 151(3–4), 409–412. Obtenido de: https://doi.org/10.1016/j.vetmic.2011.03.016
dc.relationPritchett, J. C., Naesens, L., & Montoya, J. (2014). Treating HHV-6 Infections: The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents. The Laboratory Efficacy and Clinical Use of Anti-HHV-6 Agents. In Human Herpesviruses HHV-6A, HHV-6B, and HHV-7, Third Edition. p. 311–331. Elsevier B.V. Obtenido de: https://doi.org/10.1016/B978-0-444-62703-2.00019-7
dc.relationQi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700. Obtenido de: https://doi.org/10.1016/j.carres.2004.09.007
dc.relationRahal, E. A., Kazzi, N., Nassar, F. J., & Matar, G. M. (2012). Escherichia coli O157:H7—Clinical aspects and novel treatment approaches. Frontiers in Cellular and Infection Microbiology, 2(November), 1–7. Obtenido de: https://doi.org/10.3389/fcimb.2012.00138
dc.relationRahal, E. A., Kazzi, N., Nassar, F. J., & Matar, G. M. (2012). Escherichia coli O157:H7—Clinical aspects and novel treatment approaches. Frontiers in Cellular and Infection Microbiology, 2(November), 1–7. Obtenido de: https://doi.org/10.3389/fcimb.2012.00138
dc.relationRasheed, M. U., Thajuddin, N., Ahamed, P., Teklemariam, Z., & Jamil, K. (2014). Resistência microbiana a drogas em linhagens de Escherichia coli isoladas de fontes alimentares. Revista Do Instituto de Medicina Tropical de Sao Paulo, 56(4), 341–346. Obtenido de: https://doi.org/10.1590/S0036-46652014000400012
dc.relationRebouças de Araújo, Í. D., Coriolano de Aquino, N., Véras de Aguiar Guerra, A. C., Ferreira de Almeida Júnior, R., Mendonça Araújo, R., Fernandes de Araújo Júnior, R., … Sousa Andrade, V. (2017). Chemical composition and evaluation of the antibacterial and Cytotoxic activities of the essential oil from the leaves of Myracrodruon urundeuva. BMC Complementary and Alternative Medicine, 17(1), 419. Obtenido de: https://doi.org/10.1186/s12906-017-1918-6
dc.relationBajpai, V. K., Rahman, a, Shukla, S., Mehta, a, Arafat, S. M. Y., Rahman, M. M., & Ferdousi, Z. (2009). Antibacterial activity of leaf extracts of Pongamia pinnata from India. Pharmaceutical Biology, 47(April 2008), 1162–1167. Obtenido de: https://doi.org/Doi 10.3109/13880200903019218
dc.relationRiool, M., de Breij, A., Drijfhout, J. W., Nibbering, P. H., & Zaat, S. A. J. (2017). Antimicrobial Peptides in Biomedical Device Manufacturing. Frontiers in Chemistry, 5(August), 1–13. Obtenido de: https://doi.org/10.3389/fchem.2017.00063
dc.relationRivas-Santiago, B., Sada, E., Hernández-Pando, R., & Tsutsumi, V. (2006). Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Publica de Mexico, 48(1), 62–71. Obtenido de: https://doi.org/10.1590/S0036-36342006000100010
dc.relationRivera, L. E. C., Ramos, A. P., & Padilla Desgarennes, C. (2007). Péptidos antimicrobianos: antibióticos naturales de la piel Artículo de revisión. Dermatología Rev Mex Volumen, 51(2), 57–67. Obtenido de: http://www.medigraphic.com/pdfs/derrevmex/rmd-2007/rmd072d.pdf
dc.relationSafdar, N., Said, A., Gangnon, R. E., & Maki, D. G. (2002). Risk of Hemolytic Uremic Syndrome. The Journal of the American Medical Association, 288(8), 996–1001. Obtenido de: https://doi.org/10.1056/NEJM200006293422601.THE
dc.relationSalim Mattar, Jorge Visbal S, G. A. (2001). E. coli 0157:H7 Enterohemorrágico: Un agente etiológico de diarrea en Colombia. Mvz-Córdoba 2001, 6(2), 81–86.
dc.relationSaranya, S., Vijayaranai, K., Pavithra, S., Raihana, N., & Kumanan, K. (2017). In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicology Reports, 4(February), 427–430. Obtenido de: https://doi.org/10.1016/j.toxrep.2017.07.005
dc.relationSathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens. ISRN Microbiology, 2013, 1–5. Obtenido de: https://doi.org/10.1155/2013/272086
dc.relationSchmidt, N., Mishra, A., Lai, G. H., & Wong, G. C. L. (2010). Arginine-rich cell-penetrating peptides. FEBS Letters. Federation of European Biochemical Societies. Obtenido de: https://doi.org/10.1016/j.febslet.2009.11.046
dc.relationSeiler, A. E. M., & Spielmann, H. (2011). The validated embryonic stem cell test to predict embryotoxicity in vitro. Nature Protocols, 6(7), 961–978. Obtenido de: https://doi.org/10.1038/nprot.2011.348
dc.relationSenhaji, O., Faid, M., & Kalalou, I. (2007). Inactivation of Escherichia coli O157:H7 by essential oil from Cinnamomum zeylanicum. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases, 11(2), 234–236. Obtenido de: https://doi.org/10.1590/S1413-86702007000200013
dc.relationBartoloni, A., Sennati, S., Di Maggio, T., Mantella, A., Riccobono, E., Strohmeyer, M., Rossolini, G. M. (2016). Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. International Journal of Infectious Diseases, 43(February), 1–6. Obtenido de: https://doi.org/10.1016/j.ijid.2015.12.008
dc.relationSenthilraja, P., & Kathiresan, K. (2015). In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF -7 cell lines study of Marine Yeast. Journal of Applied Pharmaceutical Science, 5(03), 080–084. https://doi.org/10.7324/JAPS.2015.50313
dc.relationSeo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T., & Lee, B. J. (2012). Antimicrobial peptides for therapeutic applications: A review. Molecules, 17(10), 12276–12286. Obtenido de: https://doi.org/10.3390/molecules171012276
dc.relationSharma, S., Singh, R., & Rana, S. (2011). Bioactive peptides: A review. International Journal Bioautomation, 15(4), 223–250. Obtenido de: https://doi.org/10.1093/fqs/fyx006
dc.relationShawki, A., & McCole, D. F. (2017). Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli. Cellular and Molecular Gastroenterology and Hepatology, 3(1), 41–50. Obtenido de: https://doi.org/10.1016/j.jcmgh.2016.10.004
dc.relationShin, H. H., & Cho, S. H. (2013). Prevalence of Antimicrobial Resistance in Escherichia coli Strains Isolated from Fishery Workers. Osong Public Health and Research Perspectives, 4(2), 72–75. Obtenido de: https://doi.org/10.1016/j.phrp.2013.03.001
dc.relationSiegel, S. D., Liu, J., & Ton-That, H. (2016). Biogenesis of the Gram-positive bacterial cell envelope. Current Opinion in Microbiology, 34, 31–37. Obtenido de: https://doi.org/10.1016/j.mib.2016.07.015
dc.relationSierra, J. M., Fusté, E., Rabanal, F., Vinuesa, T., & Viñas, M. (2017). An overview of antimicrobial peptides and the latest advances in their development. Expert Opinion on Biological Therapy. Taylor & Francis. Obtenido de: https://doi.org/10.1080/14712598.2017.1315402
dc.relationSmith, K. E., Wilker, P. R., Reiter, P. L., Hedican, E. B., Bender, J. B., & Hedberg, C. W. (2012). Antibiotic treatment of Escherichia coli O157 infection and the risk of hemolytic uremic syndrome, Minnesota. Pediatric Infectious Disease Journal, 31(1), 37–41. Obtenido de: https://doi.org/10.1097/INF.0b013e31823096a8
dc.relationSoto Varela, Z., Pérez Lavalle, L., & Estrada Alvarado, D. (2016). Bacterias causantes de enfermedades transmitidas por alimentos: una mirada en colombia Bacteria causing of foodborne diseases: an overview at colombia. Barranquilla (Col.), 32(1), 105–122. Obtenido de: https://doi.org/10.14482/sun.32.1.8598
dc.relationStåhl, A.-L., & Karpman, D. (2014). Enterohemorrhagic Escherichia coli Pathogenesis and the Host Response. Microbiology Spectrum, 2(5), 1–15. Obtenido de: https://doi.org/10.1128/microbiolspec.EHEC-0009-2013
dc.relationBatoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta - Biomembranes, 1858(5), 1044–1060. Obtenido de: https://doi.org/10.1016/j.bbamem.2015.10.013
dc.relationStark, M., Liu, L. P., & Deber, C. M. (2002). Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial Agents and Chemotherapy, 46(11), 3585–3590. Obtenido de: https://doi.org/10.1128/AAC.46.11.3585-3590.2002
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2019
dc.titleActividad antibacteriana y citotóxica de bioconjugados de péptidos Ib-M con nanopartículas de óxido de hierro contra Escherichia coli O157:H7 y células vero
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución