dc.contributorSuárez Barrera, Miguel Orlando
dc.contributorRueda Forero, Nohora Juliana
dc.creatorHerrera Pineda, Diego Fernando
dc.date.accessioned2020-01-21T21:10:20Z
dc.date.available2020-01-21T21:10:20Z
dc.date.created2020-01-21T21:10:20Z
dc.date.issued2018-11-23
dc.identifierT 33.18 H277a
dc.identifierhttps://repositorio.udes.edu.co/handle/001/4342
dc.description.abstractBacillus thuringiensis is a Gram-positive bacterium, δ-endotoxins producer that are toxic to different orders of insects and nematodes. Cry11 is a specific toxin against the vector A. aegypti, which is responsible for the transmission of dengue, zika and chikungunya; however, its mode of action and structure-function characteristics have not yet been fully elucidated. The research group of Molecular Biology and Biotechnology of the UDES, has a library obtained by shuffling the DNA of cry11 genes, highlighting the variant 8Cry11, which is 6 times more toxic than Cry11Aa and 3.8 more than Cry11Bb. Molecular Docking studies showed that positions 553 and 556 of this protein are relevant in the interaction with the cadherin receptor, to corroborate this information, site-directed mutagenesis was performed to reverse the aforementioned mutations, obtaining the variants 8Cry11L553F, 8Cry11L556W, and 8Cry11L553F-L556W. In this work, the toxic activity of mutants 8Cry11L553F, 8Cry11L556W, and 8Cry11L553F-L556W was determined, as well as an approximation of protein analysis both in silico and in vitro through SDS-PAGE. To achieve this, the ideal conditions for the production of δ-endotoxin (Cry11Aa) were standardized, finding a relationship between glucose concentrations (15g / L) and sources of organic and inorganic nitrogen in a ratio of 3: 7; the production of protoxin (~ 100 kDa) and toxin (32 and 34 kDa) was corroborated by SDS page. To determine the mean lethal concentration in comparison with the mutant 8Cry11 and the parental Cry11Aa, the toxicity of the mutants was evaluated, against first stage larvae of A. aegypti. The results showed loss of toxicity for the variants under study, which indicated that substituted amino acids in domain III were strongly possible involved in the loss of toxicity due to structural features.
dc.description.abstractBacillus thuringiensis es un bacilo Gram-positivo productor de δ-endotoxinas que son tóxicas para diferentes órdenes de insectos y nematodos. Cry11 es una toxina específica contra el vector A. aegypti, el cual es el responsable de la trasmisión del dengue, zika y chikungunya; sin embargo, su modo de acción y características estructura-función aún no se han elucidado completamente. El grupo de investigación de Biología Molecular y Biotecnología de la UDES, cuenta con una librería obtenida por barajado de ADN de genes cry11, resaltando la variante 8Cry11, la cual es 6 veces más toxica que Cry11Aa y 3,8 más que Cry11Bb. Estudios de Docking molecular demostraron que las posiciones 553 y 556 de esta proteína son relevantes en la interacción con el receptor cadherina, para corroborar esta información se realizó mutagénesis sitio dirigida para revertir las mutaciones mencionadas, obteniendo las variantes 8Cry11L553F, 8Cry11L556W, y 8Cry11L553F-L556W. En este trabajo se determinó la actividad tóxica de las mutantes 8Cry11L553F, 8Cry11L556W, y 8Cry11L553F-L556W así como una aproximación de análisis de proteínas tanto in silico como in vitro a través de SDS-PAGE. Para lograrlo se estandarizó las condiciones ideales para la producción de la δ-endotoxina (Cry11Aa), encontrándose una relación entre las concentraciones de glucosa (15g/L) y las fuentes de nitrógeno orgánico e inorgánico en una proporción de 3:7; se corroboró mediante SDS page la producción de protoxina (~100 kDa) y toxina (32 y 34 kDa). Se evaluó la toxicidad de las mutantes frente a larvas en primer estadío de A. aegypti para determinar la concentración letal media en comparación con la mutante 8Cry11 y la parental Cry11Aa, los resultados mostraron pérdida de toxicidad para las variantes en estudio, lo cual indicó que aminoácidos sustituidos en el dominio III fueron los posibles involucrados en la perdida de la toxicidad debido a la características estructurales.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2018
dc.publisherFacultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisherMicrobiología Industrial
dc.relationAbdullah, M., & Dean, D. (2004). Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Appl. Environ. Microbiol, 3769-3771.
dc.relationAbdullah, M., Alzate, O., Mohammad, M., McNall, R., Adang, M., & Dean, D. (2003). Introduction of Culex toxicity into Bacillus thuringiensis Cry4Ba by protein engineering. Appl Environ Microbiol 69(9), 5343-5353.
dc.relationAdang, M., Crickmore, N., & Jurat-Fuentes, J. (2014). Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Adv. Insect Physiol, 39-87.
dc.relationAlzate, O., Osorio, C., Florez, A., & Dean, D. (2010). Participation of valine 171 in alpha-Helix 5 of Bacillus thuringiensis Cry1Ab delta-endotoxin in translocation of toxin into Lymantria dispar midgut membranes. . Appl Environ Microbiol 76(23): , 787.
dc.relationAnadón, A. (2015). Neurotoxicidad de insecticidas piretroides. Evaluación del riesgo.
dc.relationAraújo, H. (2015). Aedes aegypti Control Strategies in Brazil: Incorporation of New Technologies to Overcome the Persistence of Dengue Epidemics. Insects, 576-594.
dc.relationArias, M., Orduz, S., & Lemeshko, V. (2009). Potential-dependent permeabilization of plasma membrane by the peptide BTM-P1 derived from the Cry11Bb1 protoxin. Biochimica et Biophysica Acta BBA, 1788(2), 532-537.
dc.relationBaynes, J., & Dominiczak, M. (2011). Bioquímica médica. Barcelona, España: Elservier Mosby.
dc.relationBecker, N. (2000). Bacterial control of vector-mosquitoes and black flies. In: Charles, J.F., Dele´ cluse, A., Nielsen-LeRoux, C. (Eds.), Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers, Dordrecht.
dc.relationBeegle, C., & Yamamoto, T. (1992). History of Bacillus thuringiensis berliner research and development. Can entomol, 124, 587-616.
dc.relationBeltrán, L., Díaz, S., Berdugo, C., Zamora, A., Buitrag, G., & Moreno, N. (2008). Estrategia para el diseño de un medio de cultivo para la fermentación con Bacillus thuringiensis. Revista Colombiana De Biotecnología, 28-34.
dc.relationBhatt, S., Gething, P., Brady, O., Messina, J., Farlow, A., Moyes, C., . . . Hay, S. (2013). The global distribution and burden of dengue. Nature 496(7446):, 504-507.
dc.relationBoonserm, P., Davis, P., Ellar, D., & Li, J. (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol348(2), 363-382.
dc.relationBradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem. 72: , 248-254.
dc.relationBrandy, O., Gething, P., Bhatt, S., Messina, J., Brownstein, J., Hoen, A., . . . Hay, S. (2012). Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl Trop Dis.
dc.relationBrasseur, K., Auger, P., Asselin, E., Parent, S., Côté, J.-C., & Sirois, M. (2015). Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells. Plos One (8).
dc.relationBravo, A., Gill, S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. toxicon, 423-435.
dc.relationChengchen, X., Bi-Cheng, W., Ziniu, Y., & Ming, S. (2014). Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins . Toxins, 6, 2732-2770.
dc.relationCorrêa, R. F., Ardisson-Araújo, D. M., Monnerat, R. G., & Ribeiro, B. M. (2012). Cytotoxicity Analysis of Three Bacillus thuringiensis Subsp. israelensis δ-Endotoxins towards Insect and Mammalian Cells. Plos One, 1-9.
dc.relationDean, D., Rajamohan, F., Lee, M., Wu, S., Chen, X., Alcantara, E., & Hussain, S. (1996). Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis--a minireview. Gene 179(1), 111-117.
dc.relationDeist, B., Rausch, M., Fernandez-Luna, M., Adang, M., & Bonning, B. (2014). Bt Toxin Modification for Enhanced Efficacy. Toxins, 6, 3005-3027.
dc.relationDelécluse, A., Rosso, M.-L., & Ragni, A. (1995). Cloning and Expression of a Novel Toxin Gene from Bacillus thuringiensis subsp. jegathesan Encoding a Highly Mosquitocidal Protein. Applied And Environmental Microbiology , 4230-4235.
dc.relationde-Maag, R., Weemen-Hendriks, M., Stiekema, W., & Bosch, D. (2000). Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66, 1559-1563.
dc.relationde-Maagd, R., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4), 193-199.
dc.relationde-Maagd, R., Kwa, M., van-der-Klei, H., Yamamoto, T., Schipper, B., Vlak, J., . . . Bosch, D. (1996). Domain III substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol (62) , 1537-1543.
dc.relationDerbyshire, D., & Li, J. E. (s.f.).
dc.relationDerbyshire, D., Ellar, J., & Li, J. (2001). Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D galactosamine. Acta Crystallogr D Biol Crystallogr 57, 1938-1944.
dc.relationDevlin, M. (2004). Bioquímica: libro de texto con aplicaciones clinicas . Barcelona, España: Reverté, S.A.
dc.relationDidelot, X., Barker, M., Falush, D., & Priest., F. (2009). Evolution of pathogenicity in the Bacillus cereus group. Systematic and Applied Microbiology 32 , 81-90.
dc.relationDonovan, W., Dankocsik, C., & Pearce, G. (1988). Molecular Characterization of a Gene Encoding a 72-Kilodalton Mosquito-Toxic Crystal Protein from Bacillus thuringiensis subsp. israelensis. Journal Of Bacteriology, 4732-4738.
dc.relationElleuch, J., Zghal, R., Fguira, I., Lacroix, M., Suissi, J., Chandre, F., . . . Jaoua, S. (2015). Effects of the P20 protein from Bacillus thuringiensis israelensis oninsecticidal crystal protein Cry4Ba. International Journal of Biological Macromolecules 79, 174-179.
dc.relationElleuch, J., Zghal, R., Lacoix, M., Chandre, F., Tounsi, S., & Jaoua, S. (2015). Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: genome dynamic and toxins stability. Microbiological Research, 48-54.
dc.relationElleuch, J., Zribi, R., Noël, M., Chandre, F., Tounsi, S., & Jaoua, S. (2015). Evidence of two mechanisms involved in Bacillus thuringiensis israelensis decreased toxicity against mosquito larvae: Genome dynamic and toxins stability. Microbiological Research, 48-54.
dc.relationEmiliano, P., Zanicthe, E., Bravo, A., & Soberón, M. (2011). Binging of bacillus thuringiensis subsp. isrraelensis Cry4Ba to Cyt1Aa has an important role in synergism. peptides, 32, 595-600.
dc.relationFernández, L., Pérez, C., Segovia, L., Rodríguez, M., Gill, S., Bravo, A., & Soberón, M. (2005). Cry11Aa toxin from Bacillus thurigiensis binds its receptor in Aedes aegypti mosquito larvae through loop α-8 of domain II . FEBS Letters 579, 3508-3514.
dc.relationFerré, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringensis. . Annu. Rev. Entomol 47:, 501-533.
dc.relationGalitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J., Pangborn, W., & English, L. (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57, 1101-1109.
dc.relationGeorghiou, G., & Wirth, C. (1997). Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis subsp. israelensis on Development of Resistance in the Mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63(3):, 1095-1101.
dc.relationHilbert, D., & Piggot, P. (2004). Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol Mol Biol Rev 68(2):, 234–262.
dc.relationHoeven, V.-D. (2014). Bacillus thuringiensis toxins: their mode of action and the potential interaction between them . ECO TAT Statistical Consultancy in Ecology, Ecotoxicology and Agricultural Research.
dc.relationHui, F., Scheib, U., Hu, Y., Sommer, R., Aroian, R., & Ghosh, P. (2012). Structure and glycolipid binding properties of the nematicidal protein Cry5B. Biochemistry 51(49), 9911-9921.
dc.relationJiménez-Juárez, N., Muñoz-Garay, C., & Gómez, I. (2008). The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta. . Peptides, 29, 318–23.
dc.relationKarlova, R., Weemen-Hendriks, M., Naimov, S., Ceron, J., Dukiandjiev, S., & de-Maagd, R. (2005). Bacillus thuringiensis delta-endotoxin Cry1ac domain III enhances activity against Heliothis virescens in some, but not all Cry1-Cry1Ac hybrids. Journal invertebr Pathol 88, 169-172.
dc.relationLacey, L. (1997). Bacteria: Laboratory bioassay of bacteria against aquatic insects with emphasis on larvae of mosquitoes and black flies. En Manual of techniques in insects pathology (págs. 80-90). USA: Yakima Agricultural Research Laboratory USADA-ARS.
dc.relationLecadet, M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., & Thiéry, I. (1999). Updating the H-antigen classification of Bacillus thuringiensis. Journal of applied microbiology, 660–672.
dc.relationLee, M., You, T., Gould, F., & Dean, H. (1999). Identification of residues in domain III of Bacillus thuingiensis Cry1Ac toxin that affect binding and toxicity . Appl Environ Microbiol 65, 4513-4520.
dc.relationLee, S., Aimanova, K., & Gill, S. (2014). Alkaline phophatases and aminopeptidases are altered in a Cry11Aa resistant strain of Aedes aegypti. Insect Biochemistry and Molecular Biology, 54, 112-121.
dc.relationLi, J., Carroll, J., & Ellar, D. (1991). Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature Publishing Group, 353.
dc.relationLi, M., Choi, J., Roh, J., Shim, H., Kang, J., Kim, Y., . . . je, Y. (2007). Identification and molecular characterization of novel cry1-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J Microbiol Biotechnol 17(1), 15-20.
dc.relationLikitvivatanavong, S., Aimanova, K., & Gill, S. (2009). Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity. FEBS Letters, 583(12), 2021-2030.
dc.relationLópez-Meza, J., & Ibarra, J. (1996). Characterization of a Novel Strain of Bacillus thuringiensis. Applied And Environmental Microbiology, 1306-1310.
dc.relationLópez-Pazos, S., & Cerón, J. (2010). Proteínas Cry de Bacillus thuringiensis y su interacción con coleópteros . NOVA - Publicación científica en ciencias biomedicas, 183-194.
dc.relationLópez-Pazos, S., & Cerón-Salamanca, J. (2015). Three dimensional structure of Bacillus thuringiensis toxins: a review. Revista Acta Biológica Colombiana, 19-32.
dc.relationMandal, C., Gayen, S., Basu, A., Ghosh, K., Dasgupta, S., Maiti, M., & Sen, S. (2007). Prediction-based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20(12), 599-606.
dc.relationMehlo, L., Gahakwa, D., Nghia, P., Loc, N., Capell, T., Gatehouse, J., & Gatehouse, A. (2005). An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc. Natl. Acad. Sci., 7812-7816.
dc.relationMelo, A. L., Soccol, V. T., & Soccol, C. R. (2016). Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Reviews in Biotechnology, 317–326.
dc.relationMireles, M. (2006). Análisis genético de cepas nativas de Bacillus thuringiensis aisladas de zonas aguacateras y su evaluación tóxica contra Argyrotaenia sp. . Instituto politécnico nacional.
dc.relationMorse, R., Yamamoto, T., & Stroud, R. (2001). Structure of Cry2A suggests an unexpected receptor binding epitope. Structure 9, 409-417.
dc.relationMushtaq, R., Shakoori, A., & Jurat-Fuentes, J. (2018). Domain III of Cry1Ac Is Critical to Binding and Toxicity against Soybean Looper (Chrysodeixis includens) but Not to Velvetbean Caterpillar (Anticarsia gemmatalis). Toxins 10(3), 95-106.
dc.relationNair, M., Liu, X., & Dean, D. (2015). Membrane insertion of the Bacillus thuringiensis Cry1Ab toxin: single mutation in domain II block partitioning of the toxin into the brush border membrane. Biochemistry 47(21), 5814-5822.
dc.relationOMS. (2017). Dengue, datos y estadísticas. Retrieved from . Obtenido de http://www.who.int/mediacentre/factsheets/fs117/es/
dc.relationOrduz, S., Realpe, M., Arango, R., & Angel, L. (1998). Sequence of the Cry11Bb1 gene from Bacillus thuringiensis subsp. Medellin and toxicity analysis of its encoded protein. Biochimica et Biophysica, 1388, 267-272.
dc.relationPalacios, M. I. (2015). Bases de resisntecia a preparados bioinsecticidas basados en Bacillus thuringiensis en diferentes especies de insectos .
dc.relationPalma, L., Muñoz, D., Berry, C., Murillo, J., & Caballero, P. (2014). Bacillus thuringiensis Toxins: an Overview of Their Biocidal Activity. Toxins, 3296-3325.
dc.relationParra, L. (2017). Mutación sitio-dirigida de las posiciones 553F y 556W de la variante 8Cry11 de Bacillus thurigiensis. Trabajo de Grado, Universidad De Santander .
dc.relationPortela-Dussán, D., Chaparro-Giraldo, A., & López-Pazos, A. (2013). La biotecnología de Bacillus thuringiensis en la agricultura . Nova-publicación Científica En Ciencias Biomédicasca En Ciencias Biomédicas, 87–96.
dc.relationPortela-dussán, D., Chaparro-giraldo, A., & López-pazos, S. (2013). La biotecnología de Bacillus thuringiensis en la agricultura. NOVA - Publicación Científica En Ciencias Biomédicasca En Ciencias Biomédicas, 87-96.
dc.relationPowell, J. (2013). History of domestication and spread of Aedes aegypti—a review. Memórias do Instituto Oswaldo Cruz Suppl 1, 11-17.
dc.relationPowell, J. (2013). History of domestication and spread of Aedes aegypti—a review. . Memórias do Instituto Oswaldo Cruz Suppl 1, 11-17.
dc.relationRajamohan, F., Hussain, S., Cotrill, J., Dean, H., Carolina, N., & Bacteriol, D. (1996). Mutations at Domain II , Loop 3 , of Bacillus thuringiensis CryIAa and CryIAb a-Endotoxins Suggest Loop 3 Is Involved in Initial Binding to Lepidopteran Midguts. The Journal Of Biological Chemistry 271(41), 25220-25226.
dc.relationSambrook, J., & Russell, D. W. (2006). The Condensed Protocols from Molecular Cloning: A Laboratory Manual. CSHL Press. doi:0879697717, 9780879697716
dc.relationSanahuja, G., Banakar, R., Twyman, R., Capell, T., & Christou, P. (2011). Bacillus thuringiensis: a century of research, development and commercial applications. Plant biotechnology jorunal, 283-300.
dc.relationSansinenea, E. (2012). bacillus thuringiensis biotechnology-Chapter: Discovery and Description of Bacillus. Springer.
dc.relationSauka, D., & Benintende, G. (2008). Bacillus thuringiensis: generalidades. Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas. Revista Argentina de Microbiología 40, 124-140.
dc.relationSauka, D., Monella, R., & Benintende, G. (2010). Detection of the mosquitocidal toxin genes enconding Cry11 proteins from Bacillus thuringiensis using a novel PCR-RFLP method. Revista Argentina de Microbiología, 23-26.
dc.relationSchnepf, E., Crickmore, N., Rie, J. V., Lereclus, D., Baum, J., Feitelson, J., . . . Dean, H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Ml Biol rev 62(3), 775-806.
dc.relationShi, Y., Zeng, S., Yuan, M., Sun, F., & Pang, Y. (2006). Influencia de la proteína accesoria P19 de Bacillus thuringiensis en la proteína cristalina insecticida Cry11Aa. Wei Sheng Wu Xue Bao 46 (3), 353-357.
dc.relationSoberón, M., & Bravo, A. (2007). Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación. Biotecnologia V14, 303-314.
dc.relationSoberón, M., & Bravo, A. (2008). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 1-14.
dc.relationSoberón, M., Pardo, L., Muñóz-Garay, C., Sánchez, J., Gómez, I., Porta, H., & Bravo, A. (2010). Proteins: Membrane Binding and Pore Formation. (G. A. Lakey, Ed.) México: Landes Bioscience and Springer Science+Business Media.
dc.relationSoberón, M., Rodriguez-Almazán, C., Muñóz-Garay, C., Pardo-López, L., porta, H., & Bravo, A. (2012). Bacillus thuringiensis Cry and Cyt mutants useful to counter toxin action in specific environments and to overcome insect resistance in the field. Pesticide Biochemistry and Physiology, 104, 111-117.
dc.relationSosa-Peinado, A. (2014). Interacciones entre lingandos y las proteinas: fundamentos, detección y futuro del rediseño de interacciones. México Distrito Federal .
dc.relationSuarez-Barrera, M. (2015). Análisis molecular y determinación de la actividad tóxica de variantes Cry11 de Bacillus thuringiensis en el control de Aedes aegypti. Universidad De Santander.
dc.relationTallinski, R., Laporte, F., & G Tetreau, L. D. (2015). Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Infection, Genetics and Evolution 44, 218-227.
dc.relationTiewsiri, K., & Angsuthanasombat, C. (2007). Structurally Conserved Aromaticity of Tyr 249 and Phe 264 in Helix 7 Is Important for Toxicity of the Cry4Ba Toxin. Journal Of Biochemistry And Molecular Biology 40(2), 163-171.
dc.relationTuntitippawan, T., Boonserm, P., Katzenmeier, G., & Angsuthanasombat, C. (2005). Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol Lett; 242(2), 325-332.
dc.relationUjváry, I. (2010). Hayes' handbook of pesticide toxicology-Chapter 3 – Pest Control Agents from Natural Products. Budapest, Hungary: iKem BT, H-1033 . doi:doi.org/10.1016/B978-0-12-374367-1.00003-3
dc.relationWalters, F., deFontes, C., Hart, H., Warren, G., & Chen, J. (2010). Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl. Environ. Microbiol , 3082-3088.
dc.relationWalters, F., deFontes, C., Hart, H., Warren, G., & Chen, J. (2010). Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76, 3082-3088.
dc.relationWirth, M., Delecluse, A., Federici, B., & Walton, W. (1998). Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 64(11):, 4174-4179.
dc.relationWirth, M., Walton, W., & Federici, B. (2015). Evolution of Resistance in Culex quinquefasciatus (Say) Selected With a Recombinant Bacillus thuringiensis Strain-Producing Cyt1Aa and Cry11Ba, and the Binary Toxin, Bin, From Lysinibacillus sphaericus. J Med Entomol 52(5), 1028-1035.
dc.relationWu, S., Koller, N., Miller, D., Bauer, L., & Dean, D. (2000). Enhanced toxicity of Bacillus thuringiensis. FEBS lett., 227-232.
dc.relationXu, Y., Nagai, M., Bagdasarian, M., Smith, T., & Walker, E. (2001). Expression of the p20 gene from Bacillus thuringiensis H-14 increases Cry11A toxin production and enhances mosquito-larvicidal activity in recombinant gram-negative bacteria. Appl. Environ. Microbiol, 67, 3010–3015.
dc.relationZhang, Q., Hua, G., Bayyareddy, K., & Adang, M. (2013). Analyses of a-amylase and a-glucosidase in the malaria vector mosquito, Anopheles gambiae, as receptors of Cry11Ba toxin of Bacillus. Insect Biochemistry and Molecular Biology (43)10, 907–915.
dc.relationZhang, R., Zhao, M., Yu, N., & Su, M. (2005). Co-expression of crystal protein gene cry26Aa and cry28Aa has an ability to form parasporal crystal inside exosporium in Bacillus thuringiensis subsp. finitimus. Wei Sheng Wu Bao 45(6), 955-958.
dc.relationZhang, X., Candas, M., & Griko, N. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ, 12, 1407-1416.
dc.relationZhuang, M., Oltean, D., & Gómez, I. (2002). Heliothis virescens ans manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation . J Biol Chem, 13863-13872.
dc.relationZouari, N., Dhouib, A., Ellouz, R., & Jaoua, S. (1998). Nutritional requirements of a strain of bacillus thuringiensis subsp. kurstaki and use of gruel hydrolysate for the formulation of a new medium for δ-endotoxin production. Applied Biochemistry and Biotechnology, 41-52.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2018
dc.titleAnálisis estructural y determinación de la actividad tóxica de las mutantes 8cry11l553f, 8cry11l556w, y 8cry11l553f-l556w obtenidas por mutagénesis sitio dirigida en larvas de primer estadio de aedes aegypti.
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución