dc.contributorZafra, German
dc.contributorValdivieso Quintero, Wilfredo
dc.creatorCáceres Villamizar. Camila Andrea
dc.date.accessioned2020-01-23T20:48:52Z
dc.date.available2020-01-23T20:48:52Z
dc.date.created2020-01-23T20:48:52Z
dc.date.issued2019-03-13
dc.identifierT 33. 19 C112e
dc.identifierhttps://repositorio.udes.edu.co/handle/001/4356
dc.description.abstractEl presente estudio tuvo como objetivo determinar la expresión diferencial de enzimas secretadas por una cepa lipolítica de C. palmioleophila durante la degradación del aceite de palma. La caracterización de las proteínas fue realizada en diferentes intervalos de tiempo, por medio de un estudio descriptivo experimental con técnicas moleculares como la electroforesis de proteínas SDS-PAGE y electroforesis en 2D. Se encontró que la mayor expresión de perfiles proteicos tanto intracelulares como extracelulares de la cepa SACL-11 de Candida palmioleophila se presentó a las 48 horas de exposición al aceite de palma. El perfil proteico intracelular estuvo conformado por nueve bandas proteicas diferentes con un rango de peso molecular desde los 18.7 hasta los 216.5 KDa, dentro de las cuales las proteínas extracelulares con pesos moleculares de 52.9 KDa y 45.9 KDa podrían corresponder a lipasas y/o esterasas encargadas del proceso de biotransformación del aceite de palma. Además, una banda de 49.2 KDa presentó similitud con las lipasas LIP4 y LIP8 descritas previamente para Candida albicans. En cuanto a los perfiles bidimensionales, se observó una mayor cantidad de spots para las proteínas extracelulares en comparación con las intracelulares. El estudio demostró que en efecto existen diferencias entre los perfiles proteicos de las enzimas extracelulares secretadas por Candida palmioleophila SACL-11 a través del tiempo, especialmente en la cantidad de bandas/spots expresados, en su peso molecular y punto isoeléctrico durante la degradación del aceite de palma.
dc.description.abstractThe objective of the present study was to determine the differential expression of enzymes secreted by a lipolytic strain of C. palmioleophila during the degradation of palm oil. The characterization of the proteins was carried out in different time intervals, by means of an experimental descriptive study with molecular techniques such as SDS-PAGE and 2D electrophoresis. The highest expression of both intracellular and extracellular protein profiles of the SACL-11 strain of Candida palmioleophila occurred 48 hours after exposure to palm oil. The intracellular protein profile consisted of nine different bands with a molecular weight range from 18.7 KDa to 216.5 KDa, within which extracellular proteins with molecular weights of 52.9 KDa and 45.9 KDa could correspond to lipases and / or esterases involved in palm oil biotransformation. In addition, a 49.2 KDa band resembled LIP4 and LIP8 lipases described previously in Candida albicans. Regarding the two-dimensional profiles, a higher number of spots was observed for intracellular proteins compared to extracellular ones. The study showed that there are differences between the protein profiles of the extracellular enzymes secreted by Candida palmioleophila SACL-11 over time, especially in the number of bands / spots expressed, in their molecular weight and isoelectric point during the degradation of palm oil.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2019
dc.publisherFacultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisherMicrobiología Industrial
dc.relationAgualimpia, B., Otero, J. V., & Zafra, G. (2013). Evaluation of Native Microorganisms with Potential for the Degradation of Oil and Grease in Palm Oil Refinery Effluents. Biotecnología Aplicada, 33(1), 1–12. Retrieved from http://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=68552
dc.relationBenjamin, S., & Pandey, A. (1998, December 18). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast. Wiley-Blackwell. https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K
dc.relationBenjamin, S., & Pandey, A. (2001). Isolation and characterization of three distinct forms of lipases from candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 44(2), 213–221. https://doi.org/10.1590/S1516-89132001000200016
dc.relationBio-Rad Laboratories. PROTEAN i12 IEF System Manual (2014).
dc.relationBrandt, M. E., & Lockhart, S. R. (2012). Recent taxonomic developments with candida and other opportunistic yeasts. Current Fungal Infection Reports, 6(3), 170–177. https://doi.org/10.1007/s12281-012-0094-x
dc.relationCárdenas, A. G. (2016). Oil Palm Agro-industry in America. Revista Palmas, 37, 215–228. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Memorias de la XVIII Conferencia Internacional sobre Palma de aceite/M_3_3_ La agroindustria en America.pdf
dc.relationCongreso de Colombia, E. (1996). Ley 253 de 1996, (enero 9), 1–54. Retrieved from http://ambientebogota.gov.co/documents/24732/3901795/Ley_253.pdf
dc.relationDe León, U., & Bejega García, V. (2015). Aplicación de lipasas microbianas para la producción de biocombustibles similares al biodiésel que integran la glicerina en forma de monoglicérido. Universidad de Cordoba.
dc.relationDiez, A. E. A., & Sandoval, L. M. C. (2012). Producción biotecnológica de lipasas microbianas, una alternativa sostenible para la utilización de residuos agroindustriales. Vitae, 19(3), 244–247. Retrieved from http://www.redalyc.org/html/1698/169825291001/
dc.relationFacio, M. L., Madalena, L., Fraind, S., Alejandre, M., Bresciani, P., & Pizzolato, M. (2013). Electroforesis bidimensional en orina : una alternativa para el laboratorio clínico *. Acta Bioquímica Clínica Latinoamericana, 47(1), 37–46. Retrieved from http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572013000100006
dc.relationFernando de la Cuesta Marina. (2010). Estudio del perfil proteico de tejido y secretoma de la arteria coronaria humana en la enfermedad aterosclerótica. Universidad Complutense de Madrid. Retrieved from https://core.ac.uk/download/pdf/19714986.pdf
dc.relationFiorini, A., Rosado, F. R., Bettega, E. M. da S., Melo, K. C. S., Kukolj, C., Bonfim-Mendonça, P. de S., … Svidzinski, T. I. E. (2016). Candida Albicans protein profile changes in response to the butanolic extract of Sapindus Saponaria L. Revista Do Instituto de Medicina Tropical de Sao Paulo, 58(0). https://doi.org/10.1590/S1678-9946201658025
dc.relationFu, Y., Ibrahim, A. S., Fonzi, W., Zhou, X., Ramos, C. F., & Ghannoum, M. A. (1997). Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology, 143(2), 331–340. https://doi.org/10.1099/00221287-143-2-331
dc.relationGonzález-Bacerio, J., Rodríguez Hernández, J., & del Monte Martínez, A. (2010). Lipases: enzymes with potential for the development of immobilized biocatalysts by interfacial adsorption. Revista Colombiana de Biotecnología, 12(1), 113–140. Retrieved from http://www.redalyc.org/html/776/77617786013/
dc.relationHøegh, I., Patkar, S., Halkier, T., & Hansen, M. T. (1995). Two lipases from Candida antarctica : cloning and expression in Aspergillus oryzae. Canadian Journal of Botany, 73(S1), 869–875. https://doi.org/10.1139/b95-333
dc.relationHube, B., Stehr, F., Bossenz, M., Mazur, A., Kretschmar, M., & Schäfer, W. (2000). Secreted lipases of Candida albicans: Cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of Microbiology, 174(5), 362–374. https://doi.org/10.1007/s002030000218
dc.relationJafari, N., Kasra-Kermanshahi, R., & Reaz Soudi, M. (2013). Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iranian Journal of Microbiology, 5(4), 434–440. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25848518
dc.relationJensen, R. H., & Arendrup, M. C. (2011). Candida palmioleophila: Characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. Journal of Clinical Microbiology, 49(2), 549–556. https://doi.org/10.1128/JCM.02071-10
dc.relationLee, G. C., Tang, S. J., Sun, K. H., & Shaw, J. F. (1999). Analysis of the gene family encoding lipases in Candida rugosa by competitive reverse transcription-PCR. Applied and Environmental Microbiology, 65(9), 3888–3895. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10473391
dc.relationLi, Z., Wrenn, B. A., & Venosa, A. D. (2005). Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation, 16(4), 341–352. https://doi.org/10.1007/s10532-004-2057-6
dc.relationM., S. M. R., & C., D. M. M. (2009). Análisis de las propiedades del aceite de palma en el desarrollo de su industria. Revista Palmas, 30(2), 11–24. Retrieved from http://publicaciones.fedepalma.org/index.php/palmas/article/view/1432
dc.relationMaddelainne, H. S. (2014). Lipidos: Caracteristicas Principales Y Su Metabolismo. Revista de Actualización Clínica 2014, 41, 2142–2145. Retrieved from http://www.revistasbolivianas.org.bo/pdf/raci/v41/v41_a04.pdf
dc.relationMujica, C. (2010). EVOLUCIÓN DEL SECTOR PALMICULTOR. Retrieved from http://www.udi.edu.co/images/investigaciones/publicaciones/libros/porter/08/Libro-EvoluciondelSectorPalmicultor.pdf
dc.relationNakase, Takashi; Itoh, Mutsumi; Suzuki, Motofumi; Komagata, Kazuo; Kodama, T. (1988). Candida palmioleophila sp. nov., a yeast capable of assimilating crude palm oil, formerly identified as Torulopsis candida. Journal of General Applied Microbiology, 498(6), 493–497. https://doi.org/10.2323/jgam.34.493
dc.relationOkino-Delgado, C. H., Do Prado, D. Z., Facanali, R., Marques, M. M. O., Nascimento, A. S., Fernandes, C. J. da C., … Fleuri, L. F. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLoS ONE, 12(10), e0186246. https://doi.org/10.1371/journal.pone.0186246
dc.relationPanreac Quimica S.A. (2014). Aceites y grasas. Reverté. Retrieved from https://books.google.es/books?hl=es&lr=&id=xFjGDCmLuKQC&oi=fnd&pg=PA3&dq=definición+de+grasas+y+aceites&ots=HzGKqM0RS1&sig=9vHgSTpVDsMusJWvAjyhFB_6fdA#v=onepage&q=definición de grasas y aceites&f=false
dc.relationParés I. Farrás, R. (1997). Bioquímica de los microorganismos. Reverté. Retrieved from https://books.google.es/books?hl=es&lr=&id=eHK7eHXBRk4C&oi=fnd&pg=PR5&dq=ciclo+de+krebs+bioquimica&ots=e2IbU47qHC&sig=2xvg40VMXXrQ1cU7KfGFTbyzU_I#v=onepage&q=ciclo de krebs bioquimica&f=false
dc.relationPark, M., Do, E., & Jung, W. H. (2013, June). Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology. Korean Society of Mycology. https://doi.org/10.5941/MYCO.2013.41.2.67
dc.relationRincón, L. (2016). ANÁLISIS DIFERENCIAL DE PERFILES PROTEICOS DE Candida palmioleophila CON ACTIVIDAD DEGRADADORA DE GRASAS Y ACEITES BAJO DIFERENTES CONDICIONES DE CRECIMIENTO. Universidad de Santander.
dc.relationRincón, L. J., Agualimpia, B., & Zafra, G. (2018). Differential protein profiles of the lipolytic yeast Candida palmioleophila under different growth conditions. CHEMICAL ENGINEERING TRANSACTIONS, 64. https://doi.org/10.3303/CET1864058
dc.relationRodriguez-mateus, Z., Agualimpia, B., & Zafra, G. (2016). Isolation and Molecular Characterization of Microorganisms with Potential for the Degradation of Oil and Grease from Palm Oil Refinery Wastes. CHEMICAL ENGINEERING TRANSACTIONS, 49, 517–522. https://doi.org/10.3303/CET1649087
dc.relationRodríguez-mateus, Z., Pacheco, K. V., & Zafra, G. (2018). Molecular detection and characterization of novel lipase genes of the lipolytic yeast Candida palmioleophila. CHEMICAL ENGINEERING TRANSACTIONS, 64. https://doi.org/10.3303/CET1864059
dc.relationRotticci-Mulder, J. C., Gustavsson, M., Holmquist, M., Hult, K., & Martinelle, M. (2001). Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expression and Purification, 21(3), 386–392. https://doi.org/10.1006/prep.2000.1387
dc.relationRuiz Aguilar, G., Fernández Sánchez, J. M., & Rodríguez Vázquez, R. (2001). Residuos peligrosos : grave riesgo ambiental. Avance y Perspectiva, 20, 151–158. Retrieved from http://www.ingenieroambiental.com/4014/grave.pdf
dc.relationSharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal. Hindawi Limited. https://doi.org/10.1155/2014/625258
dc.relationSibirny, A. A. (2016, June 1). Yeast peroxisomes: Structure, functions and biotechnological opportunities. (J. Nielsen, Ed.), FEMS Yeast Research. Oxford University Press. https://doi.org/10.1093/femsyr/fow038
dc.relationSoleimaninanadegani, M., & Manshad, S. (2014). Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. International Scholarly Research Notices, 2014, 1–8. https://doi.org/10.1155/2014/727049
dc.relationVakhlu, J., & Kour, A. (2006, January 15). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology. https://doi.org/10.2225/vol9-issue1-fulltext-9
dc.relationWang, J., Mahmood, Q., Qiu, J. P., Li, Y. S., Chang, Y. S., Chi, L. N., & Li, X. D. (2015). Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent. BioMed Research International, 2015, 617861. https://doi.org/10.1155/2015/617861
dc.relationZhang, T., Lei, J., Yang, H., Xu, K., Wang, R., & Zhang, Z. (2011). An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast, 28(11), 795–798. https://doi.org/10.1002/yea.1905
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2019
dc.titleExpresión diferencial de proteínas secretadas por candida palmioleophila durante la degradación de aceite de palma
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución