dc.contributorRincón Orozco, Bladimiro
dc.contributorMartínez Vega, Ruth Aralí
dc.creatorTorrado García, Laura M.
dc.date.accessioned2018-11-27T15:16:43Z
dc.date.available2018-11-27T15:16:43Z
dc.date.created2018-11-27T15:16:43Z
dc.date.issued2018-04-09
dc.identifierT 86.18 T677d
dc.identifierhttps://repositorio.udes.edu.co/handle/001/652
dc.description.abstractAnnually more than 500 thousand women are affected by Uterine Cervical Cancer (UCC) worldwide. Persistent infection with high-risk human papilloma virus (HPV-HR) is a necessary cause for the onset of this cancer. Objective: To determine the prevalence of HPV infection in a vulnerable population of the northern zone of Bucaramanga. Methods: A descriptive cross-sectional study was carryout in women aged 35 to 65 years with moderate or high risk (≥3 points) to develop UCC, determined by a standardized epidemiological survey. In a cérvico-vaginal sample, obtained by self-sampling, molecular tests were performed by polymerase chain reaction and dot-blot hybridization using the HPV Direct Flow CHIP system. Results: A total of 810 women were surveyed; 435 (53.7%) of them underwent self-sampling because they presented moderate or high risk. Their median age was 47.3 years (RIQ 41-53 years); 55.1% (n = 237) studied until primary. Almost the entire population resided in Strata 1 and 2 (98.8%) and most of them were from the subsidized social security system (87.2%); 95.1% (n = 355) had at least one pregnancy. We found a prevalence for HPV infection of 10.6% (CI 95%: 7,8 – 13,8; n = 434), for HPV-HR of 3.9% (CI 95%: 2,3 – 6,2; n = 17), for low risk HPV (HPV-LR) of 3.5% (CI 95%: 1,4 – 5,6; n = 15), for undetermined genotype of 1.9% (n = 8) and for coinfections HPV 1,3% (IC 95%: 0,5 – 3,0; n=6). The most common HPV-HR genotype was HPV-59 (n = 4) and HPV-LR was HPV-62 / 81 (n = 7). There was coinfection with HPV-HR and HPV-LR in five women and coinfection with two HPV-LR in one woman. Conclusion: The frequency of HPV-AR genotypes found varies from what is commonly reported until now. HPV-16 was not the most prevalent genotype and HPV-18 was not present in any of the samples analyze
dc.description.abstractAnualmente más de 500 mil mujeres son afectadas por Cáncer de Cuello Uterino (CCU) a nivel mundial. La infección persistente con Virus de Papiloma Humano de alto riesgo (VPH-AR) es causa necesaria para la aparición de este cáncer. Objetivo: Determinar la prevalencia de infección por VPH en una población vulnerable de la zona Norte de Bucaramanga. Métodos: se realizó un estudio de corte transversal descriptivo en mujeres de 35 a 65 años con riesgo moderado o alto (≥3 puntos) para desarrollar CCU determinado por una encuesta epidemiológica estandarizada. En una muestra cérvico-vaginal por autotoma se realizaron pruebas moleculares mediante reacción en cadena de la polimerasa e hibridación dot-blot reversa, utilizando el sistema HPV Direct Flow CHIP. Resultados: Se encuestaron 810 mujeres; de éstas, 435 (53,7%) se realizaron autotoma porque presentaron riesgo moderado o alto. La mediana de edad fue de 47,3 años (RIQ 41-53 años). El 55,1% (n=237) estudiaron hasta primaria. Casi la totalidad de la población reside en estrato 1 y 2 (98,8%) y en su mayoría son del régimen subsidiado de seguridad social (87,2%). La prevalencia de infección para VPH fue de 10,6% (IC 95%: 7,8 – 13,8; n=46), para VPH-AR de 3,9% (IC 95%: 2,3 – 6,2; n=17), para VPH de bajo riesgo (VPH-BR) de 3,5% (IC 95%: 1,4 – 5,6; n=15) para genotipo indeterminado de 1,9% (IC 95%: 0,8 – 3,6; n=8) y para coinfecciones 1,3% (IC 95%: 0,5 – 3,0; n=6). El genotipo más común de VPH-AR fue VPH-59 (n=4) y para VPH-BR fue VPH62/81 (n=7). Se encontró confección con VPH-AR y VPH-BR en cinco mujeres y con dos genotipos de VPH-BR en una. Conclusión: La frecuencia de los genotipos de VPH-AR encontrados, varía de lo comúnmente reportado hasta el momento. VPH-16 no fue el genotipo más prevalente y VPH-18 no se encontró en ninguna de las muestras analizadas.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2018
dc.publisherFacultad Ciencias de la Salud
dc.publisherMaestría en Investigación en enfermedades Infecciosas
dc.relationAbbas Abul K., Lichtman;, A. H., & Pillai, S. (2014). Cellular and Molecular Immunology. Elsevier (Vol. 8a ed.).
dc.relationAdes, S., Koushik, A., Duarte-Franco, E., Mansour, N., Arseneau, J., Provencher, D., … Franco, E. L. (2008). Selected class I and class II HLA alleles and haplotypes and risk of high-grade cervical intraepithelial neoplasia. International Journal of Cancer. Journal International Du Cancer, 122(12), 2820–2826. https://doi.org/10.1002/ijc.23459
dc.relationAkagi, K., Li, J., Broutian, T. R., Padilla-Nash, H., Xiao, W., Jiang, B., … Gillison, M. L. (2014). Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Research, 24(2), 185–199. https://doi.org/10.1101/gr.164806.113
dc.relationArbyn, M., & Castle, P. E. (2015). Offering self-sampling kits for HPV testing to reach women who do not attend in the regular cervical cancer screening program. Cancer Epidemiology Biomarkers and Prevention, 24(5), 769–772. https://doi.org/10.1158/1055-9965.EPI-14-1417
dc.relationArbyn, M., Verdoodt, F., Snijders, P. J. F., Verhoef, V. M. J., Suonio, E., Dillner, L., … Anttila, A. (2014). Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: A meta-analysis. The Lancet Oncology, 15(2), 172–183. https://doi.org/10.1016/S1470-2045(13)70570-9
dc.relationArrossi, S., Ramos, S., Straw, C., Thouyaret, L., & Orellana, L. (2016). HPV testing: A mixed-method approach to understand why women prefer self-collection in a middle-income country. BMC Public Health, 16(1). https://doi.org/10.1186/s12889-016-3474-2
dc.relationAydin, I., Weber, S., Snijder, B., Samperio Ventayol, P., Kühbacher, A., Becker, M., … Schelhaas, M. (2014). Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses. PLoS Pathogens, 10(5). https://doi.org/10.1371/journal.ppat.1004162
dc.relationBanin, S., Moyal, L., Shieh, S. Y., Taya, Y., Anderson, C. W., Chessa, L., … Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281(5383), 1674–1677. https://doi.org/10.1126/science.281.5383.1674
dc.relationBermedo-Carrasco, S., Peña-Sánchez, J. N., Lepnurm, R., Szafron, M., & Waldner, C. (2015). Inequities in cervical cancer screening among Colombian women: A multilevel analysis of a nationwide survey. Cancer Epidemiology, 39(2), 229–236. https://doi.org/10.1016/j.canep.2015.01.011
dc.relationBernard, B. A., Bailly, C., Lenoir, M. C., Darmon, M., Thierry, F., & Yaniv, M. (1989). The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. Journal of Virology, 63(10), 4317–4324. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=251048&tool=pmcentrez&rendertype=abstract
dc.relationBernard, H. U. (2005). The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. Journal of Clinical Virology. https://doi.org/10.1016/j.jcv.2004.10.021
dc.relationPhillips, S., Garland, S. M., Tan, J. H., Quinn, M. A., & Tabrizi, S. N. (2015). Comparison of the Roche Cobas®4800 HPV assay to Digene Hybrid Capture 2, Roche Linear Array and Roche Amplicor for Detection of High-Risk Human Papillomavirus Genotypes in Women undergoing treatment for cervical dysplasia. Journal of Clinical Virology, 62, 63–65. https://doi.org/10.1016/j.jcv.2014.11.017
dc.relationPyeon, D., Pearce, S. M., Lank, S. M., Ahlquist, P., & Lambert, P. F. (2009). Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathogens, 5(2). https://doi.org/10.1371/journal.ppat.1000318
dc.relationRoman, A., & Munger, K. (2013). The papillomavirus E7 proteins. Virology, 445(1–2), 138–168. https://doi.org/10.1016/j.virol.2013.04.013
dc.relationSakakibara, N., Mitra, R., & McBride, A. A. (2011). The Papillomavirus E1 Helicase Activates a Cellular DNA Damage Response in Viral Replication Foci. Journal of Virology, 85(17), 8981–8995. https://doi.org/10.1128/JVI.00541-11
dc.relationSarian, L. O., Derchain, S. F., Naud, P., Roteli-Martins, C., Longatto, A., Tatti, S., … Syrjanen, K. (2005). Evaluation of visual inspection with acetic acid (VIA), Lugol’s iodine (VILI), cervical cytology and HPV testing as cervical screening tools in Latin America . Journal of Medical Screening , 12(3), 142–149. https://doi.org/10.1258/0969141054855328
dc.relationSchäfer, G., Blumenthal, M. J., & Katz, A. A. (2015). Interaction of human tumor viruses with host cell surface receptors and cell entry. Viruses. https://doi.org/10.3390/v7052592
dc.relationSchelhaas, M., Shah, B., Holzer, M., Blattmann, P., Kühling, L., Day, P. M., … Helenius, A. (2012). Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathogens, 8(4). https://doi.org/10.1371/journal.ppat.1002657
dc.relationSchiller, J. T., Castellsagué, X., & Garland, S. M. (2012). A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. https://doi.org/10.1016/j.vaccine.2012.04.108
dc.relationSpoden, G., Kuhling, L., Cordes, N., Frenzel, B., Sapp, M., Boller, K., … Schelhaas, M. (2013). Human Papillomavirus Types 16, 18, and 31 Share Similar Endocytic Requirements for Entry. Journal of Virology, 87(13), 7765–7773. https://doi.org/10.1128/JVI.00370-13
dc.relationStanley, M. (2010). HPV - Immune response to infection and vaccination. Infectious Agents and Cancer. https://doi.org/10.1186/1750-9378-5-19
dc.relationTrus, B. L., Roden, R. B., Greenstone, H. L., Vrhel, M., Schiller, J. T., & Booy, F. P. (1997). Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 A resolution. Nature Structural Biology, 4(5), 413–420. https://doi.org/10.1038/nsb0597-413
dc.relationSzarewski, A., Ambroisine, L., Cadman, L., Austin, J., Ho, L., Terry, G., … Cuzick, J. (2008). Comparison of predictors for high-grade cervical intraepithelial neoplasia in women with abnormal smears. Cancer Epidemiology Biomarkers and Prevention, 17(11), 3033–3042. https://doi.org/10.1158/1055-9965.EPI-08-0508
dc.relationThierry, F., & Yaniv, M. (1987). The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. The EMBO Journal, 6(11), 3391–3397. https://doi.org/10.1002/j.1460-2075.1987.tb02662.x
dc.relationTornesello, M. L., Buonaguro, L., Giorgi-Rossi, P., & Buonaguro, F. M. (2013). Viral and cellular biomarkers in the diagnosis of cervical intraepithelial neoplasia and cancer. Biomed Res Int, 2013, 519619. https://doi.org/10.1155/2013/519619
dc.relationTrujillo, E., Morales, N., Buitrago, O., Posso, H., & Bravo, M. M. (2016). Distribución de los genotipos del virus del papiloma humano en mujeres de Bogotá con anomalías en la citología cervicouterina. Revista Colombiana de Cancerología, 20(1), 3–9. https://doi.org/10.1016/j.rccan.2015.11.003
dc.relationVande Pol, S. B., & Klingelhutz, A. J. (2013). Papillomavirus E6 oncoproteins. Virology, 445(1–2), 115–137. https://doi.org/10.1016/j.virol.2013.04.026
dc.relationVargas, H., Sánchez, J. P., Guerrero, M. L., Ortiz, L. T., Rodríguez, D. M., Amaya, J., … Golijow, C. (2016). Type-Specific Identification of Genital Human Papillomavirus Infection in Women with Cytological Abnormality. Acta Cytologica, 60(3), 211–216. https://doi.org/10.1159/000446389
dc.relationVinokurova, S., Wentzensen, N., Kraus, I., Klaes, R., Driesch, C., Melsheimer, P., … Doeberitz, M. V. K. (2008). Type-dependent integration frequency of human papillomavirus genomes in cervical lesions. Cancer Research, 68(1), 307–313. https://doi.org/10.1158/0008-5472.CAN-07-2754
dc.relationWalboomers, J. M. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., … Muñoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Journal of Pathology, 189(1), 12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
dc.relationWentzensen, N., Nason, M., Schiffman, M., Dodd, L., Hunt, W. C., & Wheeler, C. M. (2014). No evidence for synergy between human papillomavirus genotypes for the risk of high-grade squamous intraepithelial lesions in a large population-based study. Journal of Infectious Diseases, 209(6), 855–864. https://doi.org/10.1093/infdis/jit577
dc.relationWolf, M., Garcea, R. L., Grigorieff, N., & Harrison, S. C. (2010). Subunit interactions in bovine papillomavirus. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6298–6303. https://doi.org/10.1073/pnas.0914604107
dc.relationWorld HPV Information Center. (2017). Human Papillomavirus and Related Diseases Report. ICO HPV Information Centre Report, 1–334. https://doi.org/23 July 2017
dc.relationWright, T. C., Schiffman, M., Solomon, D., Cox, J. T., Garcia, F., Goldie, S., … Saslow, D. (2004). Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening. Obstetrics and Gynecology. https://doi.org/10.1097/01.AOG.0000109426.82624.f8
dc.relationZehbe, I., Mytilineos, J., Wikström, I., Henriksen, R., Edler, L., & Tommasino, M. (2003). Association between human papillomavirus 16 E6 variants and human leukocyte antigen class I polymorphism in cervical cancer of Swedish women. Human Immunology, 64(5), 538–542. https://doi.org/10.1016/S0198-8859(03)00033-8
dc.relationBosch, F. X., Broker, T. R., Forman, D., Moscicki, A.-B., Gillison, M. L., Doorbar, J., … Sanjosé, S. de. (2013). Comprehensive Control of Human Papillomavirus Infections and Related Diseases. Vaccine, 31, H1–H31. https://doi.org/10.1016/j.vaccine.2013.10.003
dc.relationZerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J. W., & Jansen-Dürr, P. (1996). Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein.Oncogene, 13(11), 2323–2330.
dc.relationZheng, Z.-M., & Baker, C. C. (2006). Papillomavirus genome structure, expression, and post-transcriptional regulation. Frontiers in Bioscience : A Journal and Virtual Library, 11, 2286–2302. https://doi.org/1971 [pii]
dc.relationZoodsma, M. (2005). Analysis of the entire HLA region in susceptibility for cervical cancer: a comprehensive study. Journal of Medical Genetics, 42(8), e49–e49. https://doi.org/10.1136/jmg.2005.031351
dc.relationZou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300(5625), 1542–1548. https://doi.org/10.1126/science.1083430
dc.relationBroniarczyk, J., Massimi, P., Bergant, M., & Banks, L. (2015). Human Papillomavirus Infectious Entry and Trafficking Is a Rapid Process. Journal of Virology, 89(17), 8727–8732. https://doi.org/10.1128/JVI.00722-15
dc.relationBruni, L., Barrionuevo-Rosas, L., Albero, G., Aldea, M., Serrano, B., Valencia, S., … Castellsagué, X. (2014). ICO Information Centre on HPV and Cancer (HPV Information Centre). Human Papillomavirus and Related Diseases in [Botswana].
dc.relationBruni, L., Diaz, M., Castellsagué, X., Ferrer, E., Bosch, F. X., & de Sanjosé, S. (2010). Cervical Human Papillomavirus Prevalence in 5 Continents: Meta‐Analysis of 1 Million Women with Normal Cytological Findings. The Journal of Infectious Diseases, 202(12), 1789–1799. https://doi.org/10.1086/657321
dc.relationBuck, C. B., Thompson, C. D., Pang, Y.-Y. S., Lowy, D. R., & Schiller, J. T. (2005). Maturation of Papillomavirus Capsids. Journal of Virology, 79(5), 2839–2846. https://doi.org/10.1128/JVI.79.5.2839-2846.2005
dc.relationCalderón, C. A. A., Botero, J. C., Bolaños, J. O., & Martínez, R. R. (2011). The Colombian healthcare system: 20 years of achievements and problems. Ciencia & Saude Coletiva, 16(6), 2817–2828. https://doi.org/10.1590/S1413-81232011000600020
dc.relationCarozzi, F. M., Ocello, C., Burroni, E., Faust, H., Zappa, M., Paci, E., … Sani, C. (2016). Effectiveness of HPV vaccination in women reaching screening age in Italy. Journal of Clinical Virology, 84, 74–81. https://doi.org/10.1016/j.jcv.2016.09.011
dc.relationCastle, P. E., Stoler, M. H., Wright, T. C., Sharma, A., Wright, T. L., & Behrens, C. M. (2011). Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: A subanalysis of the ATHENA study. The Lancet Oncology, 12(9), 880–890. https://doi.org/10.1016/S1470-2045(11)70188-7
dc.relationCastro-Jiménez, M. A., Londoño-Cuellar, P. A., & Vera-Cala, L. M. (2006). Asistencia a citología del cuello uterino y sus determinantes en una población rural colombiana, 1998-1999. Revista de Salud Pública, 8(3), 248–257. https://doi.org/10.1590/S0124-00642006000300010
dc.relationChen, X. S., Garcea, R. L., Goldberg, I., Casini, G., & Harrison, S. C. (2000). Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Molecular Cell, 5(3), 557–567. https://doi.org/10.1016/S1097-2765(00)80449-9
dc.relationChouhy, D., D’Andrea, R. M., Iglesias, M., Messina, A., Ivancovich, J. J., Cerda, B., … Giri, A. A. (2013). Prevalence of human papillomavirus infection in Argentinean women attending two different hospitals prior to the implementation of the National Vaccination Program. Journal of Medical Virology, 85(4), 655–666. https://doi.org/10.1002/jmv.23509
dc.relationClavel, C., Masure, M., Putaud, I., Thomas, K., Bory, J. P., Gabriel, R., … Birembaut, P. (1998). Hybrid capture II, a new sensitive test for human papillomavirus detection. Comparison with hybrid capture I and PCR results in cervical lesions. Journal of Clinical Pathology, 51(10), 737–740. https://doi.org/10.1136/jcp.51.10.737
dc.relationClifford, G. M., Gallus, S., Herrero, R., Muñoz, N., Snijders, P. J. F., Vaccarella, S., … Franceschi, S. (2005). Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: A pooled analysis. Lancet, 366(9490), 991–998. https://doi.org/10.1016/S0140-6736(05)67069-9
dc.relationCogliano, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., & El Ghissassi, F. (2005). Carcinogenicity of human papillomaviruses. Lancet Oncology. https://doi.org/10.1016/S1470-2045(05)70086-3
dc.relationCosta, A. P. F., Cobucci, R. N. O., Da Silva, J. M., Da Costa Lima, P. H., Giraldo, P. C., & Gonçalves, A. K. (2017). Safety of human papillomavirus 9-valent vaccine: A meta-analysis of randomized trials. Journal of Immunology Research. https://doi.org/10.1155/2017/3736201
dc.relationCuschieri, K. S., Cubie, H. A., Whitley, M. W., Seagar, A. L., Arends, M. J., Moore, C., … McGoogan, E. (2004). Multiple high risk HPV infections are common in cervical neoplasia and young women in a cervical screening population. Journal of Clinical Pathology, 57(1), 68–72. https://doi.org/10.1136/jcp.57.1.68
dc.relationCuzick, J., Clavel, C., Petry, K.-U., Meijer, C. J. L. M., Hoyer, H., Ratnam, S., … Iftner, T. (2006). Overview of the European and North American studies on HPV testing in primary cervical cancer screening. International Journal of Cancer, 119(5), 1095–1101. https://doi.org/10.1002/ijc.21955
dc.relationDe Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U., & Zur Hausen, H. (2004). Classification of papillomaviruses. Virology. https://doi.org/10.1016/j.virol.2004.03.033
dc.relationDell, G., Wilkinson, K. W., Tranter, R., Parish, J., Brady, R. L., & Gaston, K. (2003). Comparison of the Structure and DNA-binding Properties of the E2 Proteins from an Oncogenic and a Non-oncogenic Human Papillomavirus. Journal of Molecular Biology, 334(5), 979–991. https://doi.org/10.1016/j.jmb.2003.10.009
dc.relationDiMaio, D., & Petti, L. M. (2013). The E5 proteins. Virology, 445(1–2), 99–114. https://doi.org/10.1016/j.virol.2013.05.006
dc.relationDoorbar, J. (2006). Molecular biology of human papillomavirus infection and cervical cancer. Clinical Science (London, England : 1979), 110(5), 525–541. https://doi.org/10.1042/CS20050369
dc.relationDoorbar, J. (2013). The E4 protein; structure, function and patterns of expression. Virology, 445(1–2), 80–98. https://doi.org/10.1016/j.virol.2013.07.008
dc.relationDoorbar, J., Egawa, N., Griffin, H., Kranjec, C., & Murakami, I. (2015). Human papillomavirus molecular biology and disease association. Reviews in Medical Virology. https://doi.org/10.1002/rmv.1822
dc.relationDoorbar, J., Quint, W., Banks, L., Bravo, I. G., Stoler, M., Broker, T. R., & Stanley, M. A. (2012). The biology and life-cycle of human papillomaviruses. Vaccine. https://doi.org/10.1016/j.vaccine.2012.06.083
dc.relationDuensing, S., & M??nger, K. (2004). Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins. International Journal of Cancer. https://doi.org/10.1002/ijc.11691
dc.relationEinstein, M. H., Baron, M., Levin, M. J., Chatterjee, A., Fox, B., Scholar, S., … Dubin, G. (2011). Comparative immunogenicity and safety of human papillomavirus (HPV)-16/18 vaccine and HPV-6/11/16/18 vaccine: Follow-up from months 12-24 in a phase III randomized study of healthy women aged 18-45 y. Human Vaccines, 7(12), 1343–1358. https://doi.org/10.4161/hv.7.12.18281
dc.relationEklund, C., Forslund, O., Wallin, K. L., & Dillner, J. (2014). Global improvement in genotyping of human papillomavirus DNA: The 2011 HPV LabNet international proficiency study. Journal of Clinical Microbiology, 52(2), 449–459. https://doi.org/10.1128/JCM.02453-13
dc.relationFarfán, Y. A., García, D. A., Arías Murillo, Y., Morales, O. L., Isaza, M., & Aristizabal Gutierrez, F. (2011). Genotipificación del virus de papiloma humano en mujeres con hallazgo citológico de lesión escamosa intraepitelial de bajo grado (lsil) o de significado indeterminado (asc-us) en bogotá, colombia. Revista Colombiana de Ciencias Químico Farmacéuticas; Vol. 39, Núm. 1 (2010) 0034-7418 1909-6356, 39(1), 42–54. Retrieved from http://revistas.unal.edu.co/index.php/rccquifa/article/view/23000
dc.relationFavre, M., Orth, G., Croissant, O., & Yaniv, M. (1975). Human papillomavirus DNA: physical map. Proceedings of the National Academy of Sciences of the United States of America, 72(12), 4810–4814. https://doi.org/10.1073/pnas.72.12.4810
dc.relationFerlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., … Bray, F. (2015). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–E386. https://doi.org/10.1002/ijc.29210
dc.relationFerlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., … Bray, F. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. 11 [Internet]. https://doi.org/10.1016/j.ucl.2013.01.011
dc.relationFields, B. N., Knipe, D. M., & Howley, P. M. (2013). Fields Virology, 6th Edition. Fields Virology (Vol. 2). https://doi.org/10.1093/cid/ciu346
dc.relationFlorin, L., Becker, K. A., Lambert, C., Nowak, T., Sapp, C., Strand, D., … Sapp, M. (2006). Identification of a Dynein Interacting Domain in the Papillomavirus Minor Capsid Protein L2. Journal of Virology, 80(13), 6691–6696. https://doi.org/10.1128/JVI.00057-06
dc.relationFröberg, M., Johansson, B., Hjerpe, A., & Andersson, S. (2008). Human papillomavirus “reflex” testing as a screening method in cases of minor cytological abnormalities. British Journal of Cancer, 99(4), 563–568. https://doi.org/10.1038/sj.bjc.6604504
dc.relationGabriel Ojeda, P., Myriam Ordóñez, P., & Luis Hernando Ochoa, C. P. (2011). Encuesta nacional de demografía y salud Colombia 2010. ENDS (Vol. 5). Retrieved from https://dhsprogram.com/pubs/pdf/FR246/FR246.pdf
dc.relationGarcía, P. J., Chavez, S., Feringa, B., Chiappe, M., Li, W., Jansen, K. U., … Holmes, K. K. (2004). Reproductive tract infections in rural women from the highlands, jungle, and coastal regions of Peru. Bulletin of the World Health Organization, 82(7), 483–492. https://doi.org/10.1590/S0042-96862004000700005
dc.relationGiarrè, M., Caldeira, S., Malanchi, I., Ciccolini, F., Leão, M. J., & Tommasino, M. (2001). Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. Journal of Virology, 75(10), 4705–4712. https://doi.org/10.1128/JVI.75.10.4705-4712.2001
dc.relationGrabowska, A. K., Kaufmann, A. M., & Riemer, A. B. (2015). Identification of promiscuous HPV16-derived T helper cell epitopes for therapeutic HPV vaccine design. International Journal of Cancer, 136(1), 212–224. https://doi.org/10.1002/ijc.28968
dc.relationGravitt, P. E., Schiffman, M., Solomon, D., Wheeler, C. M., & Castle, P. E. (2008). A comparison of linear array and hybrid capture 2 for detection of carcinogenic human papillomavirus and cervical precancer in ASCUS-LSIL Triage Study. Cancer Epidemiology Biomarkers and Prevention, 17(5), 1248–1254. https://doi.org/10.1158/1055-9965.EPI-07-2904
dc.relationHan, Y., Loo, Y.-M., Militello, K. T., & Melendy, T. (1999). Interactions of the Papovavirus DNA Replication Initiator Proteins, Bovine Papillomavirus Type 1 E1 and Simian Virus 40 Large T Antigen, with Human Replication Protein A. Journal of Virology, 73(6), 4899–4907.
dc.relationHarden, M. E., & Munger, K. (2016). Human papillomavirus molecular biology. Mutation Research/Reviews in Mutation Research. https://doi.org/http://dx.doi.org/10.1016/j.mrrev.2016.07.002
dc.relationHarwood, C. A., & Proby, C. M. (2002). Human papillomaviruses and non-melanoma skin cancer. Current Opinion in Infectious Diseases. https://doi.org/10.1097/00001432-200204000-00002
dc.relationHerfs, M., Yamamoto, Y., Laury, A., Wang, X., Nucci, M. R., McLaughlin-Drubin, M. E., … Crum, C. P. (2012). A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proceedings of the National Academy of Sciences, 109(26), 10516–10521. https://doi.org/10.1073/pnas.1202684109
dc.relationHerraez-Hernandez, E., Alvarez-Perez, M., Navarro-Bustos, G., Esquivias, J., Alonso, S., Aneiros-Fernandez, J., … Rodriguez-Peralto, J. L. (2013). HPV Direct Flow CHIP: A new human papillomavirus genotyping method based on direct PCR from crude-cell extracts. Journal of Virological Methods, 193(1), 9–17. https://doi.org/10.1016/j.jviromet.2013.04.018
dc.relationHo, G. Y., Bierman, R., Beardsley, L., Chang, C. J., & Burk, R. D. (1998). Natural history of cervicovaginal papillomavirus infection in young women. The New England Journal of Medicine, 338(7), 423–428. https://doi.org/10.1056/NEJM199802123380703
dc.relationHong, S., & Laimins, L. A. (2013). Regulation of the life cycle of HPVs by differentiation and the DNA damage response. Future Microbiology, 8(12), 1547–1557. https://doi.org/10.2217/fmb.13.127
dc.relationHpv, I. C. O., & Centre, I. (2014). Human Papillomavirus and Related Diseases Report. HPV Centre, (Afghanistan), iii.
dc.relationHuman papillomaviruses. (1995). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans / World Health Organization, International Agency for Research on Cancer., 64, 1–378.
dc.relationIarc., I. A. for R. on C. W. H. O. (2012). GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Globocan, 1–6. https://doi.org/10.1002/ijc.27711
dc.relationIARC Working Group on the Evaluation of Cancer. (2005). Cervix Cancer Screening (IARC Handbooks of Cancer Prevention, 10). In Cervix Cancer Screening, IARC, Lyon (pp. 201–212).
dc.relationIwasaki, R., Galvez-Philpott, F., Arias-Stella, J., & Arias-Stella, J. (2014). Prevalence of high-risk human papillomavirus by cobas 4800 HPV test in urban Peru. Brazilian Journal of Infectious Diseases, 18(5), 469–472. https://doi.org/10.1016/j.bjid.2014.01.010
dc.relationJohannsen, E., & Lambert, P. F. (2013). Epigenetics of human papillomaviruses. Virology, 445(1–2), 205–212. https://doi.org/10.1016/j.virol.2013.07.016
dc.relationKiatpongsan, S., & Kim, J. J. (2014). Costs and cost-effectiveness of 9-valent human papillomavirus (HPV) vaccination in two east african countries. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0106836
dc.relationLeo, P. J., Madeleine, M. M., Wang, S., Schwartz, S. M., Newell, F., Pettersson-Kymmer, U., … Brown, M. A. (2017). Defining the genetic susceptibility to cervical neoplasia—A genome-wide association study. PLoS Genetics, 13(8). https://doi.org/10.1371/journal.pgen.1006866
dc.relationLogan, L., & McIlfatrick, S. (2011). Exploring women’s knowledge, experiences and perceptions of cervical cancer screening in an area of social deprivation. European Journal of Cancer Care, 20(6), 720–727. https://doi.org/10.1111/j.1365-2354.2011.01254.xLoo, Y.-M., & Melendy, T. (2004). Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. Journal of Virology, 78(4), 1605–1615. https://doi.org/10.1128/jvi.78.4.1605-1615.2004
dc.relationLucum?? Cuesta, D. I., & G??mez Guti??rrez, L. F. (2004). Accesibilidad a los servicios de salud en la pr??ctica de citolog??a reciente de cuello uterino en una zona urbana de Colombia. Revista Espanola de Salud Publica, 78(3), 367–377. https://doi.org/10.1590/S1135-57272004000300006
dc.relationMaciag, P. C., Schlecht, N. F., Souza, P. S., Franco, E. L., Villa, L. L., & Petzl-Erler, M. L. (2000). Major histocompatibility complex class II polymorphisms and risk of cervical cancer and human papillomavirus infection in Brazilian women. Cancer Epidemiology, Biomarkers & Prevention : A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 9(11), 1183–1191. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11097225
dc.relationMateos Lindemann, M. L., Rodriguez Dominguez, M. J., Chacón De Antonio, J., Sandri, M. T., Tricca, A., Sideri, M., … Halfon, P. (2012). Analytical comparison of the cobas HPV test with hybrid capture 2 for the detection of high-risk HPV genotypes. Journal of Molecular Diagnostics, 14(1), 65–70. https://doi.org/10.1016/j.jmoldx.2011.09.005
dc.relationMejlhede, N., Pedersen, B. V., Frisch, M., & Fomsgaard, A. (2010). Multiple human papilloma virus types in cervical infections: Competition or synergy? APMIS, 118(5), 346–352. https://doi.org/10.1111/j.1600-0463.2010.02602.x
dc.relationMerle, E., Rose, R. C., LeRoux, L., & Moroianu, J. (1999). Nuclear import of HPV11 L1 capsid protein is mediated by karyopherin alpha2beta1 heterodimers. Journal of Cellular Biochemistry, 74(4), 628–637. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10440932
dc.relationMiddleton, K., Peh, W., Southern, S., Griffin, H., Sotlar, K., Nakahara, T., … Doorbar, J. (2003). Organization of Human Papillomavirus Productive Cycle during Neoplastic Progression Provides a Basis for Selection of Diagnostic Markers. Journal of Virology, 77(19), 10186–10201. https://doi.org/10.1128/JVI.77.19.10186-10201.2003
dc.relationMishra, G. a, Pimple, S. a, & Shastri, S. S. (2011). An overview of prevention and early detection of cervical cancers. Indian Journal of Medical and Paediatric Oncology : Official Journal of Indian Society of Medical & Paediatric Oncology, 32(3), 125–132. https://doi.org/10.4103/0971-5851.92808
dc.relationModis, Y., Trus, B. L., & Harrison, S. C. (2002). Atomic model of the papillomavirus capsid. EMBO Journal. https://doi.org/10.1093/emboj/cdf494
dc.relationMolano, M., Posso, H., Weiderpass, E., Van den Brule, A. J. C., Ronderos, M., Franceschi, S., … Molina, C. (2002). Prevalence and determinants of HPV infection among Colombian women with normal cytology. British Journal of Cancer, 87(3), 324–333. https://doi.org/10.1038/sj.bjc.6600442
dc.relationMolijn, A., Kleter, B., Quint, W., & Van Doorn, L. J. (2005). Molecular diagnosis of human papillomavirus (HPV) infections. Journal of Clinical Virology. https://doi.org/10.1016/j.jcv.2004.12.004
dc.relationMontiel Ramos, J., Bedoya, A. M., Flores García, V., & Sánchez Vázquez, G. I. (2010). Variantes del papilomavirus humano 16 y su asociación con el HLA en cáncer cervical. Salud UIS, 42, 272–280.
dc.relationMuñoz, N., & Bravo, L. E. (2014). Epidemiology of cervical cancer in Colombia. Salud Publica de Mexico, 56(5), 431–439. https://doi.org/S0090-8258(96)90247-4 [pii]
dc.relationMuñoz, N., Méndez, F., Posso, H., Molano, M., van den Brule, A. J. C., Ronderos, M., … Muñoz, A. (2004). Incidence, duration, and determinants of cervical human papillomavirus infection in a cohort of Colombian women with normal cytological results. The Journal of Infectious Diseases, 190(12), 2077–2087. https://doi.org/10.1086/425907
dc.relationMuñoz, N., Xavier Bosch, F., Castellsagué, X., Díaz, M., De Sanjose, S., Hammouda, D., … Meijer, C. J. L. M. (2004). Against which human papillomavirus types shall we vaccinate and screen? The international perspective. International Journal of Cancer, 111(2), 278–285. https://doi.org/10.1002/ijc.20244
dc.relationMurillo, R., Herrero, R., Sierra, M. S., & Forman, D. (2016). Cervical cancer in Central and South America: Burden of disease and status of disease control. Cancer Epidemiology, 44, S121–S130. https://doi.org/10.1016/j.canep.2016.07.015
dc.relationMurillo, R., Luna, J., Gamboa, O., Osorio, E., Bonilla, J., & Cendales, R. (2010). Cervical cancer screening with naked-eye visual inspection in Colombia. International Journal of Gynecology and Obstetrics, 109(3), 230–234. https://doi.org/10.1016/j.ijgo.2010.01.019
dc.relationMurillo, R., Wiesner, C., Cendales, R., Pineros, M., & Tovar, S. (2011). Comprehensive evaluation of cervical cancer screening programs: the case of Colombia. Salud Publica de Mexico, 53(6), 469–477.
dc.relationParish, J. L., Bean, A. M., Park, R. B., & Androphy, E. J. (2006). ChlR1 Is Required for Loading Papillomavirus E2 onto Mitotic Chromosomes and Viral Genome Maintenance. Molecular Cell, 24(6), 867–876. https://doi.org/10.1016/j.molcel.2006.11.005
dc.relationParkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 55(2), 74–108. https://doi.org/10.3322/canjclin.55.2.74
dc.relationPfister, H. (2003). Chapter 8: Human papillomavirus and skin cancer. Journal of the National Cancer Institute. Monographs, 2003(31), 52–56. https://doi.org/12807946
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2018
dc.titleDetección y genotipificación del virus de papiloma humano en mujeres de una población vulnerable de la zona norte de Bucaramanga
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución