dc.contributorValdivieso Quintero, Wilfredo
dc.contributorFlórez Castillo, Johanna-Marcela
dc.creatorCarvajal Torres, Paula Alejandra
dc.date.accessioned2020-02-24T16:22:03Z
dc.date.available2020-02-24T16:22:03Z
dc.date.created2020-02-24T16:22:03Z
dc.date.issued2019-12-11
dc.identifierT 33.19 C179b
dc.identifierhttps://repositorio.udes.edu.co/handle/001/4497
dc.description.abstractDue to environmental requirements, the treatment of water from industrial processes has become a priority and under this premise phenol has served as a model compound to test new treatment processes mainly because it is a molecule that represents a family of chemical compounds with high toxicity and known and also these compounds are produced by many important industrial processes such as the oil, pharmaceutical, food industry, among others. Many processes have been tested to reduce the amount of phenols in water, but it has been found over the years that biodegradation is the simplest, most economical and easiest application process for the large volumes of industrial water produced. The objective of this research was to evaluate the biodegradation of phenol in aqueous medium by double-encapsulated bacteria in PVA-Alg and silica matrices. Different ratios of PVA and Alg and sodium and ludox® silicate were evaluated to find the best matrix for the study of phenol biodegradation. Likewise, a microorganism with the ability to degrade hydrocarbons was isolated. The results obtained allowed us to show that the best PVA-Alg matrix was P4-A1, since it presented the best results in the feasibility, shape, size and stability tests. It was found that the best matrix of sodium and ludox® silicate was S1-L5 because it presented, possibly a smaller pore size compared to the other matrices evaluated. Finally, regarding the biodegradation test, it was found that the phenol removal capacity by the free-isolated and encapsulated microorganism in the P4-A1 matrix was greater than the phenol removal capacity by Pseudomonas putida ATCC 49128 with 12 and 14% removal by the isolated microorganism and 7 and 10% by Pseudomonas putida ATCC 49128.
dc.description.abstractPor exigencias medioambientales se ha vuelto prioritario el tratamiento de las aguas provenientes de procesos industriales y bajo esta premisa el fenol ha servido como compuesto modelo para probar nuevos procesos de tratamiento debido principalmente a que es una molécula que representa una familia de compuestos químicos con toxicidad alta y conocida y además estos compuestos son producidos por muchos procesos industriales importantes como la industria del petróleo, farmacéutica, alimenticia, entre otros. Se han probado muchos procesos para reducir la cantidad de fenol en aguas, pero se ha encontrado a lo largo de los años que la biodegradación es el proceso más sencillo, económico y de más fácil aplicación para los grandes volúmenes de aguas industriales que se producen. El objetivo de esta investigación fue evaluar la biodegradación de fenol en medio acuoso por bacterias doblemente encapsuladas en matrices de PVA-Alg y sílice. Se evaluaron diferentes relaciones de PVA y Alg y silicato de sodio y ludox® para encontrar la mejor matriz para el estudio de biodegradación de fenol. Así mismo, se aisló un microorganismo con capacidad para degradar hidrocarburos. Los resultados obtenidos permitieron evidenciar que la mejor matriz de PVA-Alg fue P4-A1, pues presentó los mejores resultados en las pruebas de viabilidad, forma, tamaño y estabilidad. Se encontró que la mejor matriz de silicato de sodio y ludox® fue S1-L5 pues presentó, posiblemente un tamaño de poro inferior respecto a las demás matrices evaluadas. Finalmente, en cuanto a la prueba de biodegradación, se encontró que la capacidad de remoción de fenol por el microorganismo aislado de forma libre y encapsulada en la matriz P4-A1 fue mayor que la capacidad de remoción de fenol por Pseudomonas putida ATCC 49128 con una remoción de 12 y 14% por el microorganismo aislado y 7 y 10% por Pseudomonas putida ATCC 49128.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2019
dc.publisherFacultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisherMicrobiología Industrial
dc.relationA. Banerjee, A.K. (2010). Ghoshal. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresource Technology 101, 5501–5507.
dc.relationATSDR. (2014). Toxic Subtances Portal - Phenol. ATSDR, Atlanta, USA. Recuperado de: www.atsdr.cdc.gov/mmg/mmg/.asp?id=144&tid=27.
dc.relationAbarian, M., Hassanshahian, M. y Esbah, A. (2019). Degradación del fenol a altas concentraciones utilizando Pseudomonas putida P53 inmovilizada en aserrín atrapado en perlas de alginato de sodio. Ciencia y tecnología del agua.
dc.relationGrosso, J. L., Díaz, M. P. y León, G. (1995). Biodegradación de fenoles en aguas residuales de la industria petrolera. Ciencia, Tecnología y Futuro. 1(1): 5-15.
dc.relationGami, A., Shukor, M., Khalil, K., Dahalan, F., Khalid, A., Ahmad, S. (2014). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology. 2: 1, 11-24
dc.relationAgarry, S. E., Durojaiye, A. O., and Solomon, B. O. (2008). Microbial degradation of phenols: A review. Int. J. Environ. Pollut. 32, 12–28.
dc.relationAgency for Toxic Substances and Disease Registry (ATSDR). 2008. Toxicological Profile for Phenol. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
dc.relationMohanty, S., Jena, H. (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemcal Engineering. 34(1), pp 75-84.
dc.relationArgun M. E., Dursun S., Karatas M. and Gürü M. (2008). Activation of pine cone using Fenton oxidation for Cd (II) and Pb (II) removal. Bioresource Technology. 99, pp. 8691–8698.
dc.relationArutchelvan, V., Kanakasabai, S., Nagarajan, S., and Muralikrishnan, V. (2005). Isolation and identification of novel high strength phenol degrading bacterial strains from phenol- formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. B127, 238–243.
dc.relationArutchelvan, V., Kanakasabai, V., Nagarajan, S., Muralikrishnan, V. (2005). Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. Journal of Hazardous Materials, 127(1-3), 238–243.
dc.relationAl-Khalid, T., & El-Naas, M. H. (2012). Aerobic Biodegradation of Phenols: A Comprehensive Review. Critical Reviews in Environmental Science and Technology, 42(16), 1631– 1690.
dc.relationAl-Zuhair, S. y El-Naas, M. (2011). Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 56 (1-2), 46–50.
dc.relationAneez Ahamad, P. Y., & Mohammad Kunhi, A. A. (2010). Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation, 22(2), 253–265.
dc.relationAnnadurai G, Balan SM, Murugesan T (2000). Design of experiments in the biodegradation of phenol using immobilized Pseudomonas pictorium (NICM- 2077) on activated carbon. Bioproc. Eng. 22: 101-107.
dc.relationAnku, W. W, Mamo, M. A., Govender, P. P. (2017). Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. Phenolic Compounds - Natural Sources, Importance and Applications.
dc.relationATSDR. Agency for toxic substances and disease registry. Medical management guidelines for phenol. 2003. Available from: http://www.atsdr.cdc.gov/MHM1/ mmg115.html.
dc.relationAttiogbe, F.K., Glover-Amengor, M., Nyadziehe, K.T., (2007). Correlating biochemical and chemical oxygen demand of effluents—a case study of selected industries in Kumasi, Ghana. W. Afr. J. Appl. Ecol. 11, 110–118.
dc.relationBai X, Ye Z, Li Y, Zhou L, Yang L (2010) Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Process Biochem 45:60–66.
dc.relationBanerjee A, Ghoshal AK. (2016). Biodegradation of real petroleum wastewater by immobilized hyper phenol-tolerant strains of Bacillus cereus. Biotechnology 6:1–4
dc.relationBanerjee, A. y Ghoshal, AK (2010). Degradación de fenol por Bacillus cereus: vía y modelado cinético. Bioresource Technology, 101 (14), 5501–5507.
dc.relationBasha, K., Rajendran, A., Thangavelu, V., (2010). Recent advances in the biodegradation of phenol: a review. Asian J. Exp. Biol. Sci. 1, 219–234.
dc.relationBasha KM, Rajendran A, Thangavelu V (2010). Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1(2):219–234.
dc.relationBasha, K. M., Rajendran, A., & Thangavelu, V. (2010). Recent advances in the Biodegradation of Phenol: A review. Asian J. Exp. Biol. Sci., 1(2), 219–234
dc.relationBassani, J.C., Queiroz Santos, V.A., Barbosa-Dekker, A.M., Dekker, R.F.H., da Cunha, Má.Antô.A., Pereira, E.A. (2019). Microbial cell encapsulation as a strategy for the maintenance of stock cultures, LWT - Food Science and Technology.
dc.relationBouabidi, Z. B., El-Naas, M. H., & Zhang, Z. (2018). Immobilization of microbial cells for the biotreatment of wastewater: A review. Environmental Chemistry Letters.
dc.relationBleckmann, C.A., Rabe, B., Edgmon, S.J., Fillingame, D. (1995). Aquatic toxicity variability for fresh- and saltwater species in refinery wastewater effluent. Environmental Toxicology and Chemistry 14, 1219–1223.
dc.relationBrillas E., Sirés I. and Oturan M. A. (2009). Electro‐Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chemical Reviews 109, pp. 6570–6631.
dc.relationCarrasco, D. (2007). Aislamiento e identificación de bacterias con capacidad degradadora de hidrocarburos comprobando su actividad enzimática. (Tesis de pregrado). Universidad San Francsico de Quito. Quito, Ecuador.
dc.relationCoelho, A., Castro, A.V., Dezotti, M., Sant’Anna Jr., G.L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. J. Hazard. Mater. 137, 178–184.
dc.relationCosta SA, Azevedo HS, Reis RL (2011) Enzyme immobilization in biodegradable polymers for biomedical applications. Biodegrad Syst Tissue Eng Regen Med 1:301–318.
dc.relationConcawe (2004). Trends in oil discharged with aqueous effluents from oil refineries in Europe: 2000 survey. Concawe (address as above) Report no. 4/04, 9 pp.
dc.relationChristen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyper thermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61.
dc.relationCzaplicka, M. (2004). Sources and transformation of chlorophenols in the natural environment. Sci. Total, Environ. 21, 322.
dc.relationDash, R. R., Gaur, A., and Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater. 163, 1–11.
dc.relationDavidson R. S. (1996). The photodegradation of some naturally occurring polymers. Journal of Photochemistry and Photobiology B: Biology 33, pp. 3–25.
dc.relationDegradation by Rhodococcus opacus 1CP: Gen. Biochem. Evid. J. Biotechnol. 184, 5282.
dc.relationDervajos, G., Webb, C. (1991). ON TKE MERITS OF VIABLE-CELL IMMOBILIZATION. BIofech Ado. Vol. 9, pp. 559412, 1.
dc.relationDixon R. A. and Paiva N. L. (1995). Stress‐induced phenylpropanoid metabolism. The Plant Cell. 7, p. 1085.
dc.relationDoggett, T., Rascoe, A., (2009). Global Energy Demand Seen up 44 Percent by 2030. http://www.reuters.com/articles/GCAGreenBusiness/idUSN2719528620090527 (revisado el 25.08.2019).
dc.relationEl-Naas, M. H., Mourad, A. H. I., & Surkatti, R. (2013). Evaluation of the characteristics of polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida. International Biodeterioration and Biodegradation, 85, 413–420.
dc.relationEl-Sayed, W. S., Ibrahim, M. K., Abu-Shady, M., El-Beih, F., Ohmura, N., Saiki, H., and Ando, A. (2003). Isolation and characterization of phenol-catabolizing bacteria from a coking plant. Biosci. Biotechnol. Biochem., 67, 2026–2029.
dc.relationEl-Naas, M., Al-Zuhair, S., and Makhlouf, S. (2008). Continuous biodegradation of phenol in a Spouted Bed Bioreactor (SBBR). Chem. Eng. J. 160, 565–570.
dc.relationEl-Naas, M. H., Al-Muhtaseb, S., and Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Hazard. Mater. 164, 720–725.
dc.relationFelix, H., Brodelius, P., Mosbach, K. (1991) 'Enzyme activities of the primary and secondary metabolism of simultaneously permeabilized and immobilized plant cells'. Anal. Biochem., 116(2). 462-70.
dc.relationFelshia, S., Aswin, N., Thilagram, R., Chandralekha, A., Raghavarao, K.S.M.S., Gnanamani, A. (2017). Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: A comparative study of degradation kinetics. Journal of Environmental Management 197 (2017) 373-383.
dc.relationGalazzo JL, Bailey JE. (1990). Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng; 36:417–26.
dc.relationGehrke, H., H., Pralle, K., Deckwer, W. D. (1992) Liofilización de microorganismos: influencia de la velocidad de enfriamiento en la supervivencia. Food Biotechnology, 6 (1), 35–49.
dc.relationGarcía, J. (2007). Biodegradación de fenol en un reactor discontinuo de alimentación secuenciada. Tesis depregrado. Universidad Autónoma del Estado de Hidalgo, México.
dc.relationGórecka E, Jastrzębska M (2011). Immobilization techniques and biopolymer carriers. Biotechnol. Food Sci. 75:65-86.
dc.relationHaldimann, D., Brodelius, P. (1997) "Redirecting cellular metabolism by immobil~ation of cultured plant cells: a model study with Coffea arabica" Phytochemistry. 26(5). 1431-4.
dc.relationHan Y, Quan X, Chen S, Zhao H, Cui C, Zhao Y. (2006). Electrochemically enhanced adsorption of phenol on activated carbon fibers in basic aqueous solution. J Colloid Interface Sci. 299:766771.
dc.relationHamed TA, Bayraktar E, Mehmetoglu U, Mehmetoglu T. (2004). The biodegradation of benzene, toluene and phenol in a two-phase system. Biochem Eng J. 9:137146.
dc.relationHaritash A.K., and Kaushik C.P., 2009, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard. Mat., 169, 1-15.
dc.relationHeipieper HJ, de Bont JA (1994) Adaptation of Pseudomonas putida S12 ethanol and toluene at the level of fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444.
dc.relationHartmeier W (2012) Immobilized biocatalysts: an introduction. Springer Science & Business Media, Berlin.
dc.relationHarrison, M., Bara, S., Borghesi, D., Vione, D., Arsene, C., Olariu, R. (2005). Nitrated phenols in the atmosphere: a review. Atmospher. Environ. 39, 231.
dc.relationHarwood, C.S. & Parales, R.E. (1996). The β-Ketoadipate Pathway and the Biology of Self- Identity. Ann. Rev. Microbiol., 50:553-590.
dc.relationHsieh, F. M., Huang, C., Lin, T. F., Chen, Y. M., and Lin, J. C. (2008). Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochem. 43, 83– 92
dc.relationIsmail ZZ, Khudhair HA (2015) Recycling of immobilized cells for aerobic biodegradation of phenol in a fuidized bed bioreactor. Syst Cybern Inf 13:81–86.
dc.relationJen AC, Wake MC, Mikos AG (1996). Review: Hydrogels for cell immobilization. Biotechnol. Bioeng. 50:357-364.
dc.relationJiang, H. L., Tay, S. T., Maszenan, A. M., and Tay, J. H. (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol. Ecol. 57, 182– 191.
dc.relationJunter, G.-A., y Jouenne, T. (2004). Células microbianas viables inmovilizadas: desde el proceso hasta el proteoma ... o el carro antes del caballo. Avances en biotecnología, 22 (8), 633–658.
dc.relationKadimpati KK, Mondithoka KP, Bheemaraju S, Challa VRM (2013) Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr(III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci 3:85–92.
dc.relationKasikara-Pazarlioglu N, Telefoncu A. (2005). Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry. 40:18071814.
dc.relationKarn, SK, Chakrabarty, SK y Sudhakara Reddy, M. (2010). Caracterización de cepas de Bacillus que degradan pentaclorofenol a partir de lodos secundarios de la industria de la pulpa y el papel. Biodeterioro y biodegradación internacional, 64 (7), 609–613.
dc.relationKrishnamoorthi S, Banerjee A, Roychoudhury A (2015) Immobilized enzyme technology: potentiality and prospects. J Enzymol Metabol 1:104.
dc.relationKamaludeen, S. P. B., Arunkumar, K. R., Avadainayagam, S., & Ramasamy, K. (2003). Bioremediation of chromium contaminated environments. Indian Journal of Experimental Biology, 41, 972–985.
dc.relationKavitha, V., Palanivelu, K., (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55, 1235–1243.
dc.relationKot-Wasik, A., Dębska, J., & Namieśnik, J. (2004). Monitoring of organic pollutants in coastal waters of the Gulf of Gdańsk, Southern Baltic. Marine Pollution Bulletin, 49(3), 264–276. DOI: 10.1016/j.marpolbul.2004.02.014.
dc.relationKılıc, N. (2009). Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters. Int. Biodeterior. Biodegrad. 63, 778–781.
dc.relationKumar A, Bisht BS, Joshi VD, Dhewa T (2011). Review on bioremediation of polluted environment: A management tool. Int. J. Environ. Sci. 1:1079-1093.
dc.relationKumar, A., Kumar, S., (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem. Eng. J. 22, 151–159
dc.relationKulkarni SJ, Kaware JP. (2013). Review on research for removal of phenol from wastewater. Int J Sci Res Publ. 3:1–4.
dc.relationKrab-Husken. (2002). Production of catechols: microbiology and technology. Wageningen University, disertation, no. 3291.
dc.relationKrishnamoorthi S, Banerjee A, Roychoudhury A (2015) Immobilized enzyme technology: potentiality and prospects. J Enzymol Metabol 1:104.
dc.relationKlipp, E., Nordlander, B., Krüger, R., Gennemark, P., & Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nature Biotechnology, 23(8), 975–982.
dc.relationKwon, K. H., & Yeom, S. H. (2008). Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess and Biosystems Engineering, 32(4), 435– 442.
dc.relationK.H. Kwon, S.H. Yeom. (2009). Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess Biosyst. Eng., 32, pp. 435-442.
dc.relationLathasree, S., Rao, N., Sivashankar, B., Sadasivam, V., Rengaraj, K.,(2004). Heterogeneous photo catalytic mineralization of phenols in aqueous solutions. J. Mol. Catal. A: Chem. 223,101– 105.
dc.relationLika, K., and Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. J. Sea Res. 62, 135–146.
dc.relationLin, P., Sangaiah, R., Ranasinghe, A., Ball, L., Swenberg, J., Gold, A. (2004). Synthesis of chlorinated and nono-chlorinated biphenyl-2.3-and 3.4-catechols and their [H-2(3)]-isotopomers. Organ. Biomol. Chem. 2, 2624.
dc.relationLiu, Y. J., Zhang, A. N., & Wang, X. C. (2009). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochemical Engineering Journal, 44(2-3), 187–192.
dc.relationLob K.C. and Tar P.P. (2000). Effect of additional carbon Source on biodegradation of phenol. Buletin of Environmental Contamination and Toxicology. 64,756-767.
dc.relationLucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., and NavaSaucedo, J. (2008). Polymer biodegradation: Mechanisms and estimation techniques. Chemosphere 73, 429–442.
dc.relationLuo, H., Liu, G., Zhang, R., and Jin, S. (2009). Phenol degradation in microbial fuel cells. Chem. Eng. J. 147, 259–264.
dc.relationMahmoud, W., Rehm, El. J. (1996) 'Morphological examination of immobilized Streptomyces aureofaciens during chlortetracycline fermentation". AppL Microbial Biotechnol. 23(3-4), 305-10.
dc.relationMax B., Tugores F., Cortés‐Diéguez S. and Domínguez J. M. (2012). Bioprocess design for the microbial production of natural phenolic compounds by Debaryomyces hansenii. Applied Biochemistry and Biotechnology 168, pp. 2268–2284.
dc.relationMelo, J. S., Kholi, S., Patwardhan, A. W., and D’Souza, S. F. (2005). Effect of oxygen transfer limitations in phenol biodegradation. Process Biochem. 40, 625–628.
dc.relationMeunier, C. F., Dandoy, P., & Su, B.-L. (2010). Encapsulation of cells within silica matrixes: Towards a new advance in the conception of living hybrid materials. Journal of Colloid and Interface Science, 342(2), 211–224.
dc.relationMichałowicz, J., Duda, R. O. (2005). Analysis of Chlorophenols, Chlorocatechols, Chlorinated Methoxyphenols and Monoterpenes in Communal Sewage of ŁÓDŹ and in the Ner River in 1999–2000. Water, Air, and Soil Pollution, 164(1-4), 205–222.
dc.relationMoiseva, O., Solyamikova, J., Kaschabek, S., Groning, J., Thiel, M., Golovleva, L., Schomann, M. (2002). A New Modified ortho Cleavage Pathway of 3-Chlorocatechol.
dc.relationMohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. (2015). Phenol removal from industrial wastewaters: a short review. Desalin Water Treat. 53:2215–34.
dc.relationMuyima NYO, Cloete TE. (1995). Growth and phosphate uptake of immobilized Acinetobacter cells suspended in activated sludge mixed liquor. Water Res; 29:2461–6.
dc.relationMrozik, A., Cycon, M., and Piotrowska-Seget, Z. (2010). Changes of FAME ´ profiles as a marker of phenol degradation in different soils inoculated with Pseudomonas sp. CF600. Int. Biodeterior. Biodegrad. 64, 86–96.
dc.relationNair, C. I., Jayachandran, K., and Shashidhar, S. (2008). Biodegradation of phenol. Afr. J. Biotechnol. 7, 4951–4958.
dc.relationNassif, N., Bouvet, O., Noelle, M., Roux, C., Coradin, T., Livage J. (2002). Living bacteria in silica gels. Nature materials, vol (1): 42-44.
dc.relationNawaz MS, Franklin W, Cerniglia CE. (1993). Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia. Can J Microbiol; 39:207–12.
dc.relationNuhoglu, A., and Yalcin, B. (2005). Modelling of phenol removal in a batch reactor. Process Biochem. 40, 1233–1239.
dc.relationOCDE. (2003). SIDS initial assessment report from SIAM 16. Organización para la recuperación y el desarrollo económico, Francia.
dc.relationPark JK, Chang HN (2000). Microencapsulation of microbial cells. Biotechnol. Adv. 18:303-319.
dc.relationPardeshi, S.K., Patil, A.B., (2008). A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Solar Energy 82, 700–705.
dc.relationPashova S, Slokoska L, Sheremetska P, Krumova E, Vasileva L, Angelova M. (1999). Physiological aspects of immobilised Aspergillus niger cells producing polymethylgalacturonase. Proc Biochem; 35:15–9.
dc.relationPatnaik, P., Khoury, J. (2004). Reaction of phenol with nitrite ion: pathways of formation of nitrophenols in environmental waters. Water. Res. 38, 206.
dc.relationPavithra, K. G., P., S. K., V., J., & P., S. R. (2019). Removal of Colorants from Wastewater: A Review on Sources and Treatment Strategies. Journal of Industrial and Engineering Chemistry.
dc.relationPerullini, Ana Mercedes. (2009). Síntesis de materiales inorgánicos con porosidad controlada para la inmovilización de células. Aplicaciones en biorreactores. Tesis Doctoral, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.
dc.relationPrpich GP, Daugulis AJ (2005) Enhanced biodegradation of phenol by a microbial consortium in a solid–liquid two phase partitioning bioreactor. Biodegradation 16:329–339
dc.relationQing W, Shanfeng Z (2008). The application of immobilized microorganism technology in wastewater treatment. Environ Sci Manag 11:020.
dc.relationRao N., Singh J. R., Misra R. and Nandy T. (2009). Liquid‐liquid extraction of phenol from simulated sebacic acid wastewater. Journal of Scientific and Industrial Research 68, pp. 823–828.
dc.relationRamírez, C. (2005). Biodegradación de compuestos fenólicos en un reactor discontinuo de alimentación secuenciada. Tesis de maestría. Universidad Autónoma del Estado de Hidalgo, México.
dc.relationRaza, W., Lee, J., Raza, N., Luo, Y., Kim, K.-H., & Yang, J. (2018). Removal of phenolic compounds from industrial wastewater based on membrane-based technologies. Journal of Industrial and Engineering Chemistry.
dc.relationRuiz-Ordaz, N., Ruiz-Lagunez, J. C., Castan˜on-Gonz ´ alez, J. H., Hern ´ andez- ´ Manzano, E., Cristiani-Urbina, E., and Gal´ındez-Mayer, J. (2001). Phenol biodegradation using a repeated batch culture of Candida tropicalis in a multistage bubble column. Rev. Latinoam. Microbiol. 43, 19–25.
dc.relationAbdelwahab, O., Amin, N.K., El-Ashtoukhy, E.-S.Z., (2009). Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 163, 711–716.
dc.relationRodríguez, M. (2003). Fenton and UV-vis based advanced oxidation processes in wastewater treatment: degradation, mineralization and biodegradability enhancement. Tesis doctoral, Universitat de Barcelona, España.
dc.relationSaluja, M. (2015). Isolation and characterization of phenol degrading organisms from soil sample containing traces of crude oil. (Tesis de pregrado). Instituto Nacional de Tecnología. Rourkela, India.
dc.relationSikemma, deBont, J, K.A.M, Poolman, B. (1995). Mechanism of membrane toxicity of hydrocarbons. Microbiol. Rev, 59: 201-222.
dc.relationSun J, Liu J, Liu Y, Li Z, Nan J (2011) Optimization of entrapping conditions of nitrifying bacteria and selection of entrapping agent. Proc Environ Sci 8:166–172.
dc.relationSuzuki T, Yamaguchi T, Ishida M. (1998). Immobilization of Prototheca zopfii in calcium- alginate beads for the degradation of hydrocarbons. Process Biochem; 33:541–6.
dc.relationSchweigert N., Hunziker R. W., Escher B. I. and Eggen R. I. (2001). Acute toxicity of (chloro-) catechols and (chloro-) catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro. Environmental Toxicology and Chemistry 20, pp. 239–247.
dc.relationSchie, M. y Young, L. 2000. Biodegradation of phenol: Mechanism and aplications. Bioremediation Journal. 4 (1): 1-18.
dc.relationStolarzewicz I, Białecka-Florjańczyk E, Majewska E, Krzyczkowska J (2011) Immobilization of yeast on polymeric supports. Chem Biochem Eng Q 25:135–144.
dc.relationSzczsna-Antczak M, Antczak T, Bielecki S (2004) Stability of extracellular proteinase productivity by Bacillus subtilis cells immobilized in PVA-cryogel. Enzyme Microb Technol 34:168–176.
dc.relationS. Ali, RF Lafuente, DA Cowan. (1998). Meta-pathway degradation of phenolics by thermophilic Bacilli Enzyme Microb. Technol., 23, pp. 462-468.
dc.relationTam NFY, Chan MN, Wong YS, Popov V, Itoh H, Mander U (2010) Removal and biodegradation of polycyclic aromatic hydrocarbons by immobilized microalgal beads. WIT Trans Ecol Environ 140:391–402
dc.relationSantana, C., Ferrera, Z., Torres M., Santanda, J. (2009). Methodologies for the Extraction of Phenolic Compunds from Environmental Samples: New Approaches. Molecules, 14: 298-320.
dc.relationTsai, S. Y., and Juang, R. S. (2006). Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. J. Hazard. Mater. B138, 125–132.
dc.relationTrigo, A., Valencia, A., and Cases, I. (2009). Systemic approaches to biodegradation. FEMS Microbiol. Rev. 33, 98–108.
dc.relationT.C. Zhang, R.Y. Surampalli, S. Vigneswaran, R.D. Tyagi, S.L. Ong, C.M. Kao. (2012). Membrane technology and environmental applications, sponsored by membrane technology taskcommittee of the environmental council, Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers (ASCE), Reston, Virgina. 169–216.
dc.relationUcun, H., Yildiz, E., and Nuhoglu, A. (2010). Phenol biodegradation in a batch jet loop bioreactor (JLB): Kinetics study and pH variation. Bioresour. Technol. 101, 2965–2971.
dc.relationVione, D., Maurino, V., Pelizzeti, Z., Minero, C. (2004). Phenol photonitration and photonitrosation upon nitrite photolysis in basic solution. Internat. J. Environ. Analyt. Chem. 84, 493.
dc.relationVillegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., Biswas, N. (2016). A Short Review of Techniques for Phenol Removal from Wastewater. Current Pollution Reports, 2(3), 157–167.
dc.relationWang, Y., Tian, Y., Han, B., Zhaw, H. B., Bi, J. N., and Cai, B. L. (2007). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 19, 222–225.
dc.relationWasi, S, Tabrez S & Ahmad, M. (2013). Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess, 185:8147–8155
dc.relationWebb, C. (1996) "Biomass hold-up in immobilised cell particles". Process Engineering Aspects Immobilised Cell Systems. 117-133. Edited by: Webb, C., Black, G. M, Atkinson, B. inst. Chem. Eng, Rugby, UK.
dc.relationWeiser D, Sóti PL, Bánóczi G, Bódai V, Kiss B, Gellért Á, Nagy ZK, Koczka B, Szilágyi A, Marosi G, Poppe L (2016) Bioimprinted lipases in PVA nanofbers as efcient immobilized biocatalysts. Tetrahedron 72:7335–7342
dc.relationWillaert R, Baron G. (19993). Growth kinetics of gel-immobilized yeast cells studied by on-line microscopy. Appl Microbiol Biotechnol; 39:347–52.
dc.relationYang, S., Zhu, W., Wang, J., Chen, Z., 2008. Catalytic wet air oxidation of phenol over CeO2–TiO2 catalyst in the batch reactor and the packed-bed reactor. J. Hazard. Mater. 153, 1248– 1253.
dc.relationYeom SH, Yoo YJ (2002) Analysis of microbial adaptation at enzyme level for enhancing biodegradation rate of BTX. Korean J Chem Eng 19:780–782.
dc.relationYiğitoğlu M, Temoçin Z (2010) Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fber and its application for hydrolysis of some vegetable oils. J Mol Catal B Enzym 66:130–135.
dc.relationZafra G., Regino R., Agualimpia B., Aguilar F., 2016, Molecular characterization and evaluation of oil-degrading native bacteria isolated from automotive service station oil-contaminated soils, Chemical Engineering Transactions, 49, 511-516.
dc.relationZhao, G., Zhou, L., Li, Y., Liu, X., Ren, X., and Liu, X. (2009). Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two- phase partitioning bioreactor. J. Hazard. Mater. 169, 402–410.
dc.relationLai, C., He, T., Li, X., Cheng, F., Yue, L., Hou, Z. (2019). Catalytic wet air oxidation of phenols porous plate Cu-based catalysts. 181: 105-253.
dc.relationZhang X, Shaohong Y, Ma L, Chen C, Li C (2016) The application of immobilized microorganism technology in wastewater treatment. Chem Eng Biotechnol 2016:102–106.
dc.relationPoi, G., Medina, Aburto-Medina, A., Mok, P., Ball, A., Shahsavari, E. (2017). Biorremediation of Phenol-contaminated Industrial Wastewater Using a Bacterial Consortium- from Laboratory to field. Water, Air and Soil Pollution 228:89.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2019
dc.titleBiodegradación de fenol en medio acuoso utilizando bacterias doblemente encapsuladas en matrices de polivinil-alcohol alginato y sílice
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución