dc.contributor | Leal Pinto, Sandra Milena | |
dc.contributor | García Sánchez, Liliana Torcoroma | |
dc.creator | Mantilla Ojeda, Lucía Liliana | |
dc.date.accessioned | 2020-02-07T15:36:04Z | |
dc.date.available | 2020-02-07T15:36:04Z | |
dc.date.created | 2020-02-07T15:36:04Z | |
dc.date.issued | 2019-12-02 | |
dc.identifier | T 86.19 M168e | |
dc.identifier | https://repositorio.udes.edu.co/handle/001/4429 | |
dc.description.abstract | La leishmaniasis es una enfermedad metaxénica cuyo vector (Lutzomyia), transmite la enfermedad al penetrar la piel del huésped mamífero e introducir los protozoos de leishmania, quienes dependiendo de la especie dan paso a un tipo de manisfestación clínica específica, con diversos grados de severidad. Aunque existen distintos tratamientos para esta infección (Pentostam®, Glucantime®, pentamidine, anfotericina B y miltefosina), aún nos enfrentamos a múltiples retos: vía de administración, efectos tóxicos hepáticos y renales, fracaso al tratamiento, resistencia farmacológica, estado inmunológico del paciente, condiciones socioeconómicas, cronicidad de las lesiones y especie del parásito.
De acuerdo con lo anterior, este estudio tuvo como objetivo, caracterizar el efecto antiparasitario in vivo de un nanoconjugado de Ftalocianina de Aluminio Clorada y paramomicina (NE+FtAlCl/PM15%) activado mediante Terapia Fotodinámica (TFD), en el modelo murino de Leishmaniasis cutánea. Para esto, se realizó la estandarización del modelo de leishmaniasis cutánea en ratones BALB/c evaluado dos inoculados en dos sitios anatómicos de infección (almohadilla plantar y base de la cola). Posteriormente, se evaluó la efectividad de NE-FtAlCl/PM en dos modelos experimentales. Terapia fotodinámica fue aplicada en los grupos tratados con el fotosensibilizador usando luz LED. La efectividad clínica y parasitológica, así como toxicidad aguda relacionada con parámetros hematológicos y bioquímicos, fue evaluada. El tratamiento mostró ser inefectivo para curar lesiones cutáneas por L. (V.) braziliensis en ratones BALB/c. Sin embargo, los resultados mostraron ser similares a los obtenidos con el grupo control tratado con Glucantime (20mg/Kg/día). Adicionalmente, en el modelo con lesión cutánea ulcerada, se observó disminución del tamaño de la úlcera en los ratones tratados con NE-FtAlCl/PM+TFD. No se observaron efectos tóxicos sistémicos del tratamiento.
Este estudio es el primero en evaluar la combinación de dos fármacos bioactivos contra Leishmania spp en un mismo nanovehículo. Sin embargo, los fármacos no mostraron curar las lesiones cutáneas causadas por el parásito. La optimización del esquema de tratamiento con NE-FtAlCl/PM+TFD es recomendable. | |
dc.description.abstract | Leishmaniasis is a metaxenic disease whose vector (Lutzomyia) transmits the disease by penetrating the skin of the mammalian host and introducing the protozoa of leishmania, who depending on the species give way to a specific type of clinical manifestation, with varying degrees of severity. Although there are differents treatments (Pentostam®, Glucantime®, pentamidine, amphotericin B and miltefosine), multiple challenges are still unresolved: route of administration, liver and kidney toxic effects, treatment failure, drug resistance, immunological conditions of patient, socioeconomic surroundings, chronicity of the lesions and parasite species.
For this, the standardization of the cutaneous leishmaniasis model in BALB/c mice was evaluated using two inoculated in two anatomical sites of infection (plantar pad and tail base). Subsequently, the effectiveness of NE-FtAlCl / PM in two experimental models was evaluated. Photodynamic therapy was applied in the groups treated with the photosensitizer using LED light. Clinical and parasitological effectiveness, as well as acute toxicity related to hematological and biochemical parameters, was tested. The treatment was ineffective in curing skin lesions by L. (V.) braziliensis in BALB/c mice. However, the results were similar to those obtained with the control group treated with Glucantime (20mg/Kg/day). Additionally, in the model with ulcerated skin lesion, a decrease in ulcer size was observed in mice treated with NE-FtAlCl/PM + TFD. No systemic toxic effects of the treatment were observed.
This study is the first to evaluate the combination of two bioactive drugs against Leishmania spp in the same nanocarrier. However, the drugs were not shown to cure the skin lesions caused by the parasite. The optimization of the treatment scheme with NE-FtAlCl / PM + TFD is recommended | |
dc.language | spa | |
dc.publisher | Bucaramanga : Universidad de Santander, 2019 | |
dc.publisher | Facultad Ciencias de la Salud | |
dc.publisher | Maestría en Investigación en Enfermedades Infecciosas | |
dc.relation | Abongomera, C., Gatluak, F., Buyze, J., & Ritmeijer, K. (2016). A Comparison of the Effectiveness of Sodium Stibogluconate Monotherapy to Sodium Stibogluconate and Paromomycin Combination for the Treatment of Severe Post Kala Azar Dermal Leishmaniasis in South Sudan – A Retrospective Cohort Study. PLOS ONE, 11(9), e0163047.doi:10.1371/journal.pone.0163047 | |
dc.relation | Aguiar, M. G., Silva, D. L., Nunan, F. A., Nunan, E. A., Fernandes, A. P., & Ferreira, L. A. M. (2009). Combined topical paromomycin and oral miltefosine treatment of mice experimentally infected with Leishmania (Leishmania) major leads to reduction in both lesion size and systemic parasite burdens. Journal of antimicrobial chemotherapy, 64(6), 1234-1240. | |
dc.relation | Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., Sereno, D. (2017). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, 57, 1–29. | |
dc.relation | Akilov, O. E., Kosaka, S., O’Riordan, K., & Hasan, T. (2007). Photodynamic therapy for cutaneous leishmaniasis: the effectiveness of topical phenothiaziniums in parasite eradication and Th1 immune response stimulation. Photochemical & Photobiological Sciences, 6(10), 1067. doi:10.1039/b703521g | |
dc.relation | Alvar, J., Vélez, I. (2012). Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS One, 7 (5): e35671 | |
dc.relation | Alvar, J., Yactayo, S., Berna, C. (2006). Leishmaniasis and poverty. Trends in Parasitology. 22 (12): 552 - 7. | |
dc.relation | Anderson, C. F., Mendez, S., & Sacks, D. L. (2005). Nonhealing Infection despite Th1 Polarization Produced by a Strain of Leishmania major in C57BL/6 Mice. The Journal of Immunology, 174(5), 2934–2941. | |
dc.relation | Andrade Neto, V. V., Cunha Junior, E. F., Faioes, V. D. S., Martins, T. P., Silva, R. L., Leon, L. L., & Santos, E. C. T. (2018). Leishmaniasis treatment: update of possibilities for drug repurposing. | |
dc.relation | Andrade, Z. A., Reed, S. G., Roters, S. B., & Sadigursky, M. (1984). Immunopathology of experimental cutaneous leishmaniasis. The American journal of pathology, 114(1), 137–148. | |
dc.relation | Arana, B. A., Mendoza, C. E., Rizzo, N. R., & Kroeger, A. (2001). Randomized, controlled, double-blind trial of topical treatment of cutaneous leishmaniasis with paromomycin plus methylbenzethonium chloride ointment in Guatemala. The American journal of tropical medicine and hygiene, 65(5), 466-470. | |
dc.relation | Aranza, J., Barberán, J. (2012). Liposomal amphotericin B: a unique pharmacokinetic profile. An unfinished story. Rev Esp Quimioter 2012;25(1):17-24. | |
dc.relation | Arcila Quiceno, V. H., Conde Cotes, C. A., Nieto Pico, J. E., & Garcia Prada, F. H. (2010). Comparison of hematology reference values of strain Wistar/UIS (Rattus norvergicus) with parameters established in standards laboratories. Spei Domus, 12, 45-51. | |
dc.relation | Arias, G. A. M., Luna, A. E., Delgadillo, A. A., & Camps-Fresneda, A. (2007). Terapia fotodinámica. Medicina cutánea ibero-latino-americana, 35(6), 255-268. | |
dc.relation | Aronson, N. (2018). Cutaneous leishmaniasis: Clinical manifestations and diagnosis. Retrieved February, 19, 2019. | |
dc.relation | Aronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Magill, A. (2016). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clinical Infectious Diseases, 63(12), e202–e264. | |
dc.relation | Baigorria, E. (2019). Agentes fotosensibilizadores derivados de Ftalocianinas con aplicaciones en la inactivación fotodinámica de microorganismos. | |
dc.relation | Balkaya, M., Voyvoda, H., Unsal, C., & Celer, H. (2001). Some haematological and biochemical characteristics of male and female Sprague Dawley rats. J. Fac. Vet. Med. Univ. Instabul, 27, 37-47. | |
dc.relation | Baptista, M. S., & Wainwright, M. (2011). Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Brazilian Journal of Medical and Biological Research, 44(1), 1–10. | |
dc.relation | Barros, F., & de Aguiar Azevedo, P. (2014). Common opossum (Didelphis marsupialis Linnaeus, 1758): food and medicine for people in the Amazon. Journal of Ethnobiology and Ethnomedicine, 10(1), 65. | |
dc.relation | Bates, P. A. (2007). Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. International Journal for Parasitology, 37(10), 1097–1106. | |
dc.relation | Belkaid, Y., Mendez, S., Lira, R., Kadambi, N., Milon, G., & Sacks, D. (2000). A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. The Journal of Immunology, 165(2), 969-977. | |
dc.relation | Ben Salah, A., Ben Messaoud, N., Guedri, E., Zaatour, A., Ben Alaya, N., Bettaieb, J., ... & Abdelhamid, K. (2013). Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. New England Journal of Medicine, 368(6), 524-532. | |
dc.relation | Berbert, T. R. N., Mello, T. F. P. de, Wolf Nassif, P., Mota, C. A., Silveira, A. V., Duarte, G. C., … Silveira, T. G. V. (2018). Pentavalent Antimonials Combined with Other Therapeutic Alternatives for the Treatment of Cutaneous and Mucocutaneous Leishmaniasis: A Systematic Review. Dermatology Research and Practice, 2018, 1–21.doi:10.1155/2018/9014726 | |
dc.relation | Blackwell, J. M., Roberts, B., & Alexander, J. (1985). Response of BALB/c mice to leishmanial infection. In The BALB/c Mouse (pp. 97-106). Springer, Berlin, Heidelberg. | |
dc.relation | Blum, J., Lockwood, D. N. J., Visser, L., Harms, G., Bailey, M. S., Caumes, E., Buffet, P. (2012). Local or systemic treatment for New World cutaneous leishmaniasis? Re-evaluating the evidence for the risk of mucosal leishmaniasis. International Health, 4(3), 153–163. | |
dc.relation | Brianti, E., Celi, N., Napoli, E., Abbate, J., Arfuso, F., Gaglio, G., Latta, R., Giannetto, S., Gramiccia, M., Otranto, D. (2019). Treatment and long-term follow-up of a cat with leishmaniosis. Brianti et al. Parasites Vectors (2019) 12:121 https://doi.org/10.1186/s13071-019-3388-9. | |
dc.relation | Brito, G., Dourado, M., Guimarães, L. H., Meireles, E., Schriefer, A., de Carvalho, E. M., & Machado, P. (2017). Oral Pentoxifylline Associated with Pentavalent Antimony: A Randomized Trial for Cutaneous Leishmaniasis. The American journal of tropical medicine and hygiene, 96(5), 1155-1159. | |
dc.relation | Brown, M., Noursadeghi, M., Boyle, J., & Davidson, R. N. (2005). Successful liposomal amphotericin B treatment of Leishmania braziliensis cutaneous leishmaniasis. British Journal of Dermatology, 153(1), 203-205. | |
dc.relation | Bruni, N., Stella, B., Giraudo, L., Della Pepa, C., Gastaldi, D., & Dosio, F. (2017). Nanostructured delivery systems with improved leishmanicidal activity: a critical review. International Journal of Nanomedicine, Volume 12, 5289–5311. | |
dc.relation | Burza, S., Croft, S. L., & Boelaert, M. (2018). Leishmaniasis. The Lancet. doi:10.1016/s0140-6736(18)31204-2. | |
dc.relation | Cacuango Pujota, L. A. (2018). Estudio del tamaño de gota de nano-emulsiones mediante la técnica de microscopía de fuerza atómica (Bachelor's thesis, Quito: UCE). | |
dc.relation | Carneiro, MB, Roma, EH, Ranson, AJ, Doria, NA, Debrabant, A., Sacks, DL, ... y Peters, NC (2018). Las especies reactivas del oxígeno derivadas de NOX2 controlan la inflamación durante la infección por Leishmania amazonensis mediando la apoptosis de neutrófilos inducida por la infección. The Journal of Immunology , 200 (1), 196-208. | |
dc.relation | Carrasco Paz y Miño, M. P. (2018). Eficacia de la terapia fotodinámica con láser de baja potencia, en tratamiento periodontal básico, en estudio clínico, randomizado (Bachelor's thesis, Quito). | |
dc.relation | Carvalho, L. P., Passos, S., Schriefer, A., & Carvalho, E. M. (2012). Protective and pathologic immune responses in human tegumentary leishmaniasis. Frontiers in immunology, 3, 301. doi:10.3389/fimmu.2012.00301 | |
dc.relation | Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2004). Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis and photodynamic therapy, 1(4), 279–293. doi:10.1016/S1572-1000(05)00007-4 | |
dc.relation | Centers for Disease Control and Prevention. (2018). Laboratory Identification of Parasites of Public Health Concern. Citado 15 de junio de 2018. https://www.cdc.gov/dpdx/leishmaniasis/index.html. | |
dc.relation | Centers for Disease Control and Prevention. Identificacion de laboratorio de parásitos de salud pública, diciembre 2017. Citado el 8 de agosto de 2018. | |
dc.relation | Chakravarty, J., & Sundar, S. (2019). Current and emerging medications for the treatment of leishmaniasis. Expert Opinion on Pharmacotherapy, 1–15. doi:10.1080/14656566.2019.1609940 | |
dc.relation | Chakravarty, J., & Sundar, S. (2019). Current and emerging medications for the treatment of leishmaniasis. Expert Opinion on Pharmacotherapy, 1–15. doi:10.1080/14656566.2019.1609940 | |
dc.relation | Chávez-Fumagalli, Miguel Angel, Ribeiro, Tatiana Gomes, Castilho, Rachel Oliveira, Fernandes, Simone Odília Antunes, Cardoso, Valbert Nascimento, Coelho, Cecília Steinberg Perilo, Mendonça, Débora Vasconcelos Costa, Soto, Manuel, Tavares, Carlos Alberto Pereira, Faraco, André Augusto Gomes, & Coelho, Eduardo Antonio Ferraz. (2015). New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Revista da Sociedade Brasileira de Medicina Tropical, 48(3), 235-242. https://dx.doi.org/10.1590/0037-8682-0138-2015 | |
dc.relation | Chirino, Y. I., Orozco-lbarra, M., & Pedraza-Chaverrí, J. (2006). Evidencias de la participación del peroxinitrito en diversas enfermedades. Revista de investigación clínica, 58(4), 350-358. | |
dc.relation | Clare Vinaud, M., & de Souza Lino Junior, R. (2017). Mode of action of the main anti-parasitic drugs. Revista De Patologia Tropical / Journal of Tropical Pathology, 46(2), 121-133. https://doi.org/10.5216/rpt.v46i2.47571 | |
dc.relation | Coelho, A. C., Oliveira, J. C., Espada, C. R., Reimão, J. Q., Trinconi, C. T., & Uliana, S. R. (2016). A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome. PLoS neglected tropical diseases, 10(5), e0004660. doi:10.1371/journal.pntd.0004660 | |
dc.relation | Copeland N. K., Aronson N. E. (2015). Leishmaniasis: treatment updates and clinical practice guidelines review. Curr. Opin. Infect. Dis. 28 426–437. 10. | |
dc.relation | Da Silva Santos, C., & Brodskyn, C. I. (2014). The Role of CD4 and CD8 T Cells in Human Cutaneous Leishmaniasis. Frontiers in public health, 2, 165. doi:10.3389/fpubh.2014.00165 | |
dc.relation | Dai, T., Huang, Y. Y., & Hamblin, M. R. (2009). Photodynamic therapy for localized infections--state of the art. Photodiagnosis and photodynamic therapy, 6(3-4), 170–188. doi:10.1016/j.pdpdt.2009.10.008 | |
dc.relation | Davidson, RN, den Boer, M., y Ritmeijer, K. (2009). Paromomicina. Transacciones de la Royal Society of Tropical Medicine and Hygiene, 103 (7), 653–660. | |
dc.relation | De Guglielmo, S., Rodriguez, N., & Oviedo, H. (2019). Tratamientos para la leishmaniasis. Revista de la Facultad de Medicina, 41(1), 4-26. | |
dc.relation | de Morais-Teixeira, E., Gallupo, M. K., Rodrigues, L. F., Romanha, Á. J., & Rabello, A. (2013). In vitro interaction between paromomycin sulphate and four drugs with leishmanicidal activity against three New World Leishmania species. Journal of Antimicrobial Chemotherapy, 69(1), 150-154. | |
dc.relation | De Souza, A., Marins, D. S. S., Mathias, S. L., Monteiro, L. M., Yukuyama, M. N., Scarim, C. B., … Bou-Chacra, N. A. (2018). Promising nanotherapy in treating leishmaniasis. International Journal of Pharmaceutics, 547(1-2), 421–431. doi:10.1016/j.ijpharm.2018.06.018 | |
dc.relation | Diro, E., Lynen, L., Gebregziabiher, B., Assefa, A., Lakew, W., Belew, Z., ... van Griensven, J. (2014). Aspectos clínicos de la leishmaniasis visceral pediátrica en el noroeste de Etiopía. Medicina tropical y salud internacional, 20 (1), 8–16. doi: 10.1111 / tmi.12407 | |
dc.relation | Dougall, A. M., Alexander, B., Holt, D. C., Harris, T., Sultan, A. H., Bates, P. A., Walton, S. F. (2011). Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. International Journal for Parasitology, 41(5), 571–579. | |
dc.relation | Dutta, S., Waki, K., & Chang, K. P. (2012). Combinational Sensitization of Leishmania with Uroporphyrin and Aluminum Phthalocyanine Synergistically Enhances their Photodynamic Inactivation in vitro and in vivo†. Photochemistry and Photobiology, 88(3), 620–625. doi:10.1111/j.1751-1097.2012.01076.x | |
dc.relation | Egui, A., Ledesma, D., Pérez-Antón, E., Montoya, A., Gómez, I., Robledo, S. M., Infante, J. J., Vélez, I. D., López, M. C., Thomas, M. C. (2018). Phenotypic and Functional Profiles of Antigen-Specific CD4+ and CD8+ T Cells Associated With Infection Control in Patients With Cutaneous Leishmaniasis. Frontiers in cellular and infection microbiology, 8, 393. | |
dc.relation | Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Protein-based nanocarriers as promising drug and gene delivery systems. Journal of controlled release, 161(1), 38-49. | |
dc.relation | Escobar, P., Hernández, I.P., Rueda, C.M., Martínez, F., Páez, E., 2006. Photodynamic activity of aluminium (III) and zinc (II) phthalocyanines in Leishmania promastigotes. Biomedica 26 (Suppl. 1), 49–56. | |
dc.relation | Escobar, P., Vera, A. M., Neira, L. F., Velásquez, A. O., & Carreño, H. (2018). Photodynamic therapy using ultradeformable liposomes loaded with chlorine aluminum phthalocyanine against L. (V.) braziliensis experimental models. Experimental Parasitology, 194, 45–52. | |
dc.relation | Escobar, P., Vera, A. M., Neira, L. F., Velásquez, A. O., & Carreño, H. (2018). Photodynamic therapy using ultradeformable liposomes loaded with chlorine aluminum phthalocyanine against L. (V.) braziliensis experimental models. Experimental Parasitology, 194, 45–52. doi:10.1016/j.exppara.2018.09.016 | |
dc.relation | Escobar, P., Vera, A. M., Neira, L. F., Velásquez, A. O., & Carreño, H. (2018). Photodynamic therapy using ultradeformable liposomes loaded with chlorine aluminum phthalocyanine against L. (V.) braziliensis experimental models. Experimental Parasitology, 194, 45–52. doi:10.1016/j.exppara.2018.09.016 | |
dc.relation | Esfandiari, F., Motazedian, M. H., Asgari, G., Morowvat, M. H., Molaei, M., & Heli, H. (2019). Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta tropica, 105045. | |
dc.relation | Espiau, B., Vilhena, V., Cuvillier, A., Barral, A., & Merlin, G. (2017). Phenotypic diversity and selection maintain Leishmania amazonensis infectivity in BALB/c mouse model. Memórias do Instituto Oswaldo Cruz, 112(1), 44-52. | |
dc.relation | Espitia, P. J., Fuenmayor, C. A., & Otoni, C. G. (2019). Nanoemulsions: Synthesis, Characterization, and Application in Bio‐Based Active Food Packaging. Comprehensive Reviews in Food Science and Food Safety, 18(1), 264-285. | |
dc.relation | Espuelas, S., Schwartz, J., & Moreno, E. (2016). Nanoparticles in the Topical Treatment of Cutaneous Leishmaniasis. Nanoscience in Dermatology, 135–155. doi:10.1016/b978-0-12-802926-8.00011-2 | |
dc.relation | Ezzati Nazhad Dolatabadi, J., Valizadeh, H., & Hamishehkar, H. (2015). Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs. Advanced pharmaceutical bulletin, 5(2), 151–159. doi:10.15171/apb.2015.022 | |
dc.relation | Ferreira, L. L. G., & Andricopulo, A. D. (2018). Chemoinformatics Strategies for Leishmaniasis Drug Discovery. Frontiers in Pharmacology, 9. | |
dc.relation | Ferreira, L. S., Ramaldes, G. A., Nunan, E. A., & Ferreira, L. A. (2004). In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug development and industrial pharmacy, 30(3), 289-296. | |
dc.relation | Ferreira, L. S., Ramaldes, G. A., Nunan, E. A., & Ferreira, L. A. M. (2004). In Vitro Skin Permeation and Retention of Paromomycin from Liposomes for Topical Treatment of the Cutaneous Leishmaniasis. Drug Development and Industrial Pharmacy, 30(3), 289–296. doi:10.1081/ddc-120030423 | |
dc.relation | Ferro, C., López M., Fuya, P., Lugo, L., cordovez, JM., Gonzalez, C. (2015). Spatial Distribution of Sand Fly Vectors and Eco-Epidemiology of Cutaneous Leishmaniasis Transmission in Colombia. PLoS One. 10 (10). | |
dc.relation | Fowell, D. J., Wakil, A. E., & Locksley, R. M. (1995). Interleukin-12 in murine leishmaniasis — match, flame or fuel? Research in Immunology, 146(7-8), 566–575. doi:10.1016/0923-2494(96)83033-1. | |
dc.relation | Gadelha, E. P. N., Talhari, S., Guerra, J. A. D. O., Neves, L. O., Talhari, C., Gontijo, B., ... & Talhari, A. C. (2015). Efficacy and safety of a single dose pentamidine (7mg/kg) for patients with cutaneous leishmaniasis caused by L. guyanensis: a pilot study. Anais brasileiros de dermatologia, 90(6), 807-813. | |
dc.relation | Galvão, KCS, Vicente, AA y Sobral, PJA (2018). Desarrollo, caracterización y estabilidad de nanoemulsiones de pimienta O / W producidas por homogeneización a alta presión. Tecnología de alimentos y bioprocesos , 11 (2), 355-367. | |
dc.relation | Gaspar, M. M., Calado, S., Pereira, J., Ferronha, H., Correia, I., Castro, H., Cruz, M. E. M. (2015). Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine: Nanotechnology, Biology and Medicine, 11(7), 1851–1860. | |
dc.relation | Gelderblom, H., Verweij, J., Nooter, K. y Sparreboom, A. (2001). Cremophor EL. European Journal of Cancer, 37 (13), 1590-1598. doi: 10.1016 / s0959-8049 (01) 00171-x | |
dc.relation | Ghorbani, M., & Farhoudi, R. (2017). Leishmaniasis in humans: drug or vaccine therapy? Drug Design, Development and Therapy, Volume 12, 25–40. | |
dc.relation | Ghorbani, M., & Farhoudi, R. (2017). Leishmaniasis in humans: drug or vaccine therapy?. Drug design, development and therapy, 12, 25–40. doi:10.2147/DDDT.S146521 | |
dc.relation | Ghosh, S., Carter, K. A., & Lovell, J. F. (2019). Liposomal Formulations of Photosensitizers. Biomaterials, 119341. doi:10.1016/j.biomaterials.2019.119341 | |
dc.relation | Glans, H., Dotevall, L., Söbirk, S. K., Färnert, A., & Bradley, M. (2018). Cutaneous, mucocutaneous and visceral leishmaniasis in Sweden from 1996-2016: a retrospective study of clinical characteristics, treatments and outcomes. BMC infectious diseases, 18(1), 632. doi:10.1186/s12879-018-3539-1 | |
dc.relation | Gomes, M-, Bodelão V. (2018) Human leishmaniasis in Brazil: A general review. Revista da Associação Médica Brasileira. 64 (3). | |
dc.relation | Govender, M., Hurdayal, R., Martinez-Salazar, B., Gqada, K., Pillay, S., Gcanga, L., Passelli, K., Nieuwenhuizen, N. E., Tacchini-Cottier, F., Guler, R., … Brombacher, F. (2018). Deletion of Interleukin-4 Receptor Alpha-Responsive Keratinocytes in BALB/c Mice Does Not Alter Susceptibility to Cutaneous Leishmaniasis. Infection and immunity, 86(12), e00710-18. doi:10.1128/IAI.00710-18. | |
dc.relation | Grau, G. S. (2014). Arginasa, un enzima clave en el destino de la respuesta. Encuentros en la Biología, 7(152), 197-200. | |
dc.relation | Griñán Belda, A. (2018). El uso de la nanomedicina en el tratamiento de las enfermedades olvidadas como la Leishmaniasis. | |
dc.relation | Guery, R., Henry, B., Martin-Blondel, G., Rouzaud, C., Cordoliani, F., Harms, G., ... & Morizot, G. (2017). Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: Not a panacea. PLoS neglected tropical diseases, 11(11), e0006094. | |
dc.relation | Guía para el equipo de salud Nro. 5, Dirección de Epidemiología - Ministerio de Salud de la Nación, República Argentina marzo de 2010. Citado el 12 de agosto de 2018. | |
dc.relation | Guimaraes, A., Wen, X., Carvalho, A. M., Brzostowski, J., Valenzuela, J., & Oliveira, F. (2016). Neutrophil recruitment during Leishmania infection: The role of sand fly salivary proteins. | |
dc.relation | Handman, E., & Bullen, D. V. (2002). Interaction of Leishmania with the host macrophage. Trends in Parasitology, 18(8), 332–334. | |
dc.relation | Handman, E., Bullen, D. (2002) Interaction of Leishmania with the host macrophage. TRENDS in Parasitology. 18(8):332-334. | |
dc.relation | Hartley, M. A., Bourreau, E., Rossi, M., Castiglioni, P., Eren, R. O., Prevel, F., ... & Ronet, C. (2016). Leishmaniavirus-dependent metastatic leishmaniasis is prevented by blocking IL-17A. PLoS pathogens, 12(9), e1005852. | |
dc.relation | Hashiguchi, Y., Gomez, E. L., Kato, H., Martini, L. R., Velez, L. N., & Uezato, H. (2016). Diffuse and disseminated cutaneous leishmaniasis: clinical cases experienced in Ecuador and a brief review. Tropical medicine and health, 44, 2. doi:10.1186/s41182-016-0002-0 | |
dc.relation | Heidari-Kharaji, M., Taheri, T., Doroud, D., Habibzadeh, S., Badirzadeh, A. y Rafati, S. (2016). Eficacia mejorada de la paromomicina mediante la formulación de nanopartículas lipídicas sólidas contra el modelo de ratones Leishmaniain. Parasite Immunology, 38 (10), 599–608. doi: 10.1111 / pim.12340 | |
dc.relation | Heidari-Kharaji, M., Taheri, T., Doroud, D., Habibzadeh, S., Badirzadeh, A., & Rafati, S. (2016). Enhanced paromomycin efficacy by solid lipid nanoparticle formulation againstLeishmaniain mice model. Parasite Immunology, 38(10), 599–608. doi:10.1111/pim.12340 | |
dc.relation | Hernández, I. P., Montanari, J., Valdivieso, W., Morilla, M. J., Romero, E. L., & Escobar, P. (2012). In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. Journal of Photochemistry and Photobiology B: Biology, 117, 157–163. doi:10.1016/j.jphotobiol.2012.09.018 | |
dc.relation | Hodiamont, C. J., Kager, P. A., Bart, A., de Vries, H. J. C., van Thiel, P. P. A. M., Leenstra, T., van Gool, T. (2014). Species-Directed Therapy for Leishmaniasis in Returning Travellers: A Comprehensive Guide. PLoS Neglected Tropical Diseases, 8(5), e2832. | |
dc.relation | http://apps.who.int/iris/bitstream/handle/10665/82766/WHO_TRS_949_spa.pdf;jsessionid=D1E876A5B54CACB069C64562702D6078?sequence=1. Citado 1 de agosto de 2018. | |
dc.relation | http://histoscientifics.blogspot.com/2016/06/la-histotecnologia-y-la-leishmaniasis.html. Acceso el 01 de agosto de 2018. | |
dc.relation | http://web.bioucm.es/cont/eaa/galeria.php?foto=foto72.jpg&texto=Phlebotominae%20(macho%20y%20hembra)%3C/p%3E%C2%A9%20IRD%20%C3%A9ditions%20/Geoffroy%20B%3C/p%3E&bloque=3&sesion=103. Acceso el 02 de abril de 2019. | |
dc.relation | http://www.stopleishmania.org/es/leishmaniosis-perros.php. Citada el 2 de abril de 2019. | |
dc.relation | https://eprints.ucm.es/28785/1/T35866.pdf. Acceso el 02 de abril de 2019. | |
dc.relation | https://www.shutterstock.com/es/image-illustration/leishmania-changes-cell-shape-during-lifecycle-283929425. Citado el 17 de diciembre de 2018. | |
dc.relation | Hurd, H . (2003) Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol. 48:141-61. | |
dc.relation | Hurdayal, R., & Brombacher, F. (2017). Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis. Frontiers in immunology, 8, 1354. doi:10.3389/fimmu.2017.01354 | |
dc.relation | Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293. | |
dc.relation | Ivanova, N., Tsoneva, Y., Ilkova, N., & Ivanova, A. (2015). Complex Systems For Drug Transport Across Cell Membranes. Chemistry, 24(6), 825-848. | |
dc.relation | Jain, V., & Jain, K. (2018). Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discovery Today, 23(1), 161–170. doi:10.1016/j.drudis.2017.09.006 | |
dc.relation | Jamil, KM, Haque, R., Rahman, R., Faiz, MA, Bhuiyan, ATMRH, Kumar, A., ... Ghosh, RS (2015). Estudio de efectividad de la inyección de paromomicina IM (PMIM) para el tratamiento de la leishmaniasis visceral (VL) en Bangladesh. PLOS Neglected Tropical Diseases, 9 (10), e0004118. doi: 10.1371 / journal.pntd.0004118 | |
dc.relation | Jiménez, A., Vásquez, D., Albarracín, N., Vélez, I. (2012). Leishmaniasis Diseminada en Colombia: Reporte de un caso. Dermat Venez. 50(2): 46-49. | |
dc.relation | Kalantari, H., Hemmati, A. A., Bavarsad, N., Rezaie, A., & Ahmadi, S. (2014). Effect of topical nanoliposomes of paromomycin on rats liver and kidney. Jundishapur journal of natural pharmaceutical products, 9(4). | |
dc.relation | Kapil, S., Singh, PK, y Silakari, O. (2018). Una actualización sobre estrategias de moléculas pequeñas dirigidas a la leishmaniasis. European Journal of Medicinal Chemistry, 157, 339–367. | |
dc.relation | Karimkhani, C., Wanga, V., Coffeng, L. E., Naghavi, P., Dellavalle, R. P., & Naghavi, M. (2016). Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. The Lancet Infectious Diseases, 16(5), 584–591. doi:10.1016/s1473-3099(16)00003-7. | |
dc.relation | Katara, G. K., Ansari, N. A., Verma, S., Ramesh, V., & Salotra, P. (2011). Foxp3 and IL-10 expression correlates with parasite burden in lesional tissues of post kala azar dermal leishmaniasis (PKDL) patients. PLoS neglected tropical diseases, 5(5), e1171. | |
dc.relation | Kaufer, A., Ellis, J., Stark, D., & Barratt, J. (2017). The evolution of trypanosomatid taxonomy. Parasites & Vectors, 10(1). | |
dc.relation | Kaye, P., & Scott, P. (2011). Leishmaniasis: complexity at the host–pathogen interface. Nature Reviews Microbiology, 9(8), 604. | |
dc.relation | Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections. Dermatologic Clinics, 33(3), 579–593.doi:10.1016/j.det.2015.03.018 | |
dc.relation | Kevric, I., Cappel, MA., Keeling, JH. (2015) New World and Old World Leishmania Infections: A Practical Review. Dermatology Clinic. 33 (3): 579-93. | |
dc.relation | Khalil, E. A., Alkawareek, M. Y., Othman, G., Tbakhi, B., & Al-Bakri, A. G. (2018). Evaluation of paromomycin sulphate permeation using ex vivo human skin model. Pharmaceutical Development and Technology, 1–4. | |
dc.relation | Khalil, E. A., Alkawareek, M. Y., Othman, G., Tbakhi, B., & Al-Bakri, A. G. (2019). Evaluation of paromomycin sulphate permeation using ex vivo human skin model. Pharmaceutical development and technology, 24(3), 390-393. | |
dc.relation | Khan, W. y Kumar, N. (2010). Orientación farmacológica a los macrófagos utilizando microesferas de albúmina cargadas de paromomicina para el tratamiento de la leishmaniasis visceral: evaluación de la vitina. Journal of Drug Targeting, 19 (4), 239–250. doi: 10.3109 / 1061186x.2010.492524 | |
dc.relation | Khan, W., Sharma, S. S., & Kumar, N. (2012). Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Testing and Analysis, 5(6), 453–460.doi:10.1002/dta.339 | |
dc.relation | Kima P. E. (2007). The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. International journal for parasitology, 37(10), 1087–1096. doi:10.1016/j.ijpara.2007.04.007 | |
dc.relation | Kirkpatrick, C. E., Nolan, T. J., & Farrell, J. P. (1987). Rate of Leishmania-induced skin-lesion development in rodents depends on the site of inoculation. Parasitology, 94(03), 451. doi:10.1017/s0031182000055803 | |
dc.relation | Kou, J., Dou, D., & Yang, L. (2017). Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget, 8(46), 81591–81603. doi:10.18632/oncotarget.20189 | |
dc.relation | Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., … Kulbacka, J. (2018). Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098–1107. doi:10.1016/j.biopha.2018.07.049 | |
dc.relation | Lacomble, S., Vaughan, S., Gadhela, C., Morphew, M., Shaw, M., Mclntosh, R., Gull, K. (2009). Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. Journal of cell Science. 22(8): 1081–1090. | |
dc.relation | Larcher, F., Espada, J., Díaz-Ley, B., Jaén, P., Juarranz, A., & Quintanilla, M. (2015). Nuevos modelos experimentales para el estudio de la homeostasis y la enfermedad cutánea. Actas Dermo-Sifiliográficas, 106(1), 17–28. doi:10.1016/j.ad.2014.03.008 | |
dc.relation | León-Goñi, A. C., Blanco, D., Peña, A., Ronda, M., González, B. O., Arteaga, M. E., ... & Mancebo, A. (2011). Hematological and biochemical parameters in Sprague Dawley laboratory rats breed in CENPALAB, Cenp: SPRD. Rev. Electron. Vet, 12, 1-10. | |
dc.relation | Li, X., Zheng, B.-D., Peng, X.-H., Li, S.-Z., Ying, J.-W., Zhao, Y., … Yoon, J. (2017). Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews. doi:10.1016/j.ccr.2017.08.003 | |
dc.relation | Liew, F. Y., & O’Donnell, C. A. (1993). Immunology of Leishmaniasis. Advances in Parasitology, 161–259. doi:10.1016/s0065-308x(08)60208-0 | |
dc.relation | Liew, F. Y., Millott, S., Parkinson, C., Palmer, R. M., & Moncada, S. (1990). Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. The Journal of Immunology, 144(12), 4794-4797. | |
dc.relation | Lindoso, J. A., Cunha, M. A., Queiroz, I. T., & Moreira, C. H. (2016). Leishmaniasis-HIV coinfection: current challenges. HIV/AIDS (Auckland, N.Z.), 8, 147-156. doi:10.2147/HIV.S93789 | |
dc.relation | Loeuillet, C., Bañuls, A. L., & Hide, M. (2016). Study of Leishmania pathogenesis in mice: experimental considerations. Parasites & vectors, 9(1), 144. | |
dc.relation | Lopes, S. C., Silva, R. A., Novais, M. V., Coelho, L. D., Ferreira, L. A., Souza, P. E., ... & Oliveira, M. C. (2019). Topical photodynamic therapy with chloroaluminum phthalocyanine liposomes is as effective as systemic pentavalent antimony in the treatment of experimental cutaneous leishmaniasis. Photodiagnosis and photodynamic therapy, 28, 210-215. | |
dc.relation | López-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). doi:10.1186/s12879-016-1663-3. | |
dc.relation | MacDonald, I. J., & Dougherty, T. J. (2001). Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines (JPP), 05(02), 105–129. | |
dc.relation | Manotas-Berdugo, H., Toro Maldonado, J. F., Rodríguez-Rodríguez, J., & Salgado-García, D. (2018). Brote urbano de leishmaniasis en Colombia. Revista de Salud Pública, 20(1), 89–93.doi:10.15446/rsap.v20n1.47135 | |
dc.relation | Maroli, M., Feliciangeli, M., Bichaud, L., Charrel, R. & Gradoni, L. (2012). Phlebotomine sandflies and the spreading of Leishmaniases and other diseases of public health concern. Medical and veterinary entomology, 27(2), 123–147. | |
dc.relation | Martín, A., Mohamed, O., Romero, D., Arroyo, A., Mesa, P., Hernandez, J. (2000). La leishmaniasis visceral. El Servier. 36:8. 283-313. | |
dc.relation | Martín, I. (2014). Estudio de la saliva de Phlebotomus perniciosus y su potencial aplicación en la epidemiología y control de Leishmania Infantum. Tesis doctoral, Universidad Complutence de Madrid. | |
dc.relation | Martínez, L. P., Rebollo, J. A., Luna, A. L., Cochero, S., & Bejarano, E. E. (2010). Molecular identification of the parasites causing cutaneous leishmaniasis on the Caribbean coast of Colombia. Parasitology research, 106(3), 647-652. | |
dc.relation | Martínez-López, M., Soto, M., Iborra, S., & Sancho, D. (2018). Leishmania hijacks myeloid cells for immune escape. Frontiers in microbiology, 9, 883. | |
dc.relation | Maspi, N., Abdoli, A., & Ghaffarifar, F. (2016). Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathogens and global health, 110(6), 247-260. | |
dc.relation | Maxfield L., Crane JS. (2018). Leishmaniasis. StatPearls | |
dc.relation | McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719–1729. doi:10.1039/c2sm06903b | |
dc.relation | McGwire, B. S., & Satoskar, A. R. (2013). Leishmaniasis: clinical syndromes and treatment. QJM : monthly journal of the Association of Physicians, 107(1), 7-14. | |
dc.relation | Membrive, N. A., Kazuma, F. J., Silveira, T., Teixeira, J., Reinhold-Castro, K. R., & Teodoro, U. (2017). Disseminated cutaneous leishmaniasis caused by Leishmania braziliensis in Southern Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo, 59, e37. doi:10.1590/S1678-9946201759037 | |
dc.relation | Merchant, A., Tian, Y., Jizhe S., Xuguo, Z. (2018). Development of a diagnostic marker for Phlebotomus papatasi to initiate a potential vector surveillance program in North America. Insects. , 9 (4), 162. | |
dc.relation | Ministerio de Protección Social. (2018). Abecé de Leishmania. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/abece-lesihmaniasis.pdf. Consultada el 2 de abril de 2019. | |
dc.relation | Montalvo, A. M., Fraga, J., Montano, I., Monzote, L., Van der Auwera, G., Marín, M., & Muskus, C. (2016). Identificación molecular de aislamientos clínicos de Leishmania spp. procedentes de Colombia con base en el gen hsp70. Biomédica, 36. | |
dc.relation | Moreira, V. R., de Jesus, L. C. L., Soares, R.-E. P., Silva, L. D. M., Pinto, B. A. S., Melo, M. N., Pereira, S. R. F. (2017). Meglumine Antimoniate (Glucantime) Causes Oxidative Stress-Derived DNA Damage in BALB/c Mice Infected by Leishmania (Leishmania) infantum. Antimicrobial Agents and Chemotherapy, 61(6). | |
dc.relation | Nesi-Reis, V., Navasconi, T. R., Lera-Nosone, D. S. S. L., Oliveira, E. L., Barbosa, P. M., Caetano, W., … Lonardoni, M. V. C. (2018). Phototoxic effect of aluminium-chlorine and aluminium-hydroxide phthalocyanines on Leishmania (l.) amazonensis. Photodiagnosis and Photodynamic Therapy, 21, 239–245. doi:10.1016/j.pdpdt.2017.12.008 | |
dc.relation | Alarcón Camacho, J. D. (2018). Efecto de la terapia fotodinámica frente a Enterococcus Faecalis: estudio in vitro (Bachelor's thesis, Quito: UCE). | |
dc.relation | Neva, F. A., Ponce, C., Ponce, E., Kreutzer, R., Modabber, F., & Olliaro, P. (1997). Non-ulcerative cutaneous leishmaniasis in Honduras fails to respond to topical paromomycin. Transactions of the Royal Society of Tropical Medicine and Hygiene, 91(4), 473-475. | |
dc.relation | No, J. H. (2016). Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Tropica, 155, 113–123.doi:10.1016/j.actatropica.2015.12.016 | |
dc.relation | Nogueira, I. R., Carneiro, G., Yoshida, M. I., de Oliveira, R. B., & Ferreira, L. A. (2011). Preparation, characterization, and topical delivery of paromomycin ion pairing. Drug development and industrial pharmacy, 37(9), 1083-1089. | |
dc.relation | Organización Mundial de la Salud. (2010) Control de las leishmaniasis. Representante técnico de la Organización Mundial de la Salud. Citado el 2 de diciembre de 2018. | |
dc.relation | Organización Mundial de la Salud. (2010). Informe de la reunión del Comité de Expertos de la OMS sobre el Control de la Leishmaniasis, Ginebra 22 a 26 de marzo de 2010. | |
dc.relation | Organización Mundial de la Salud. (2018). Leishmaniasis: Datos y cifras. Citado el 15 de junio de 2018. http://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis. | |
dc.relation | Organización Mundial de la Salud. Informe de una reunión del Comité de Expertos de la OMS sobre el Control de las Leishmaniasis, Ginebra, 22 a 26 de marzo de 2010. | |
dc.relation | Organización Panamericana de la Salud. (2018). Leishmaniasis, informe epidemiológico de las Américas. Citado el 15 de junio de 2018. https://www.paho.org/hq/index.php?option=com_topics&view=article&id=29&Itemid=40754&lang=es. | |
dc.relation | Organización Panamericana de la Salud. (2019). Información general: Leishmaniasis. Citado el 31 de marzo de 2019. https://www.paho.org/hq/index.php?option=com_content&view=article&id=9417:2014-informacion-general-leishmaniasis&Itemid=40370&lang=es | |
dc.relation | Organización Panamericana de la Salud. Ministerio de Protección Social., Instituto Nacional de Salud. Guía para la atención clínica integral del paciente com Leishmaniasis, 2010. | |
dc.relation | Ospina, V. E., Mantilla, J. C., Conde, C. A., & Escobar, P. (2014). Human skin permeation of a chloroaluminum phthalocyanine nanoemulsion for optimization of topical cutaneous leishmaniasis formulations. Revista Ciencias de la Salud, 12(2), 195-211. | |
dc.relation | Ovalle-Bracho, C., Londoño-Barbosa, D., Salgado-Almario, J., & González, C. (2019). Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PloS one, 14(3), e0214124. | |
dc.relation | Panday, A., Sahoo, MK, Osorio, D., y Batra, S. (2015). NADPH oxidasas: una descripción general de la estructura a patologías innatas asociadas a la inmunidad. Inmunología celular y molecular , 12 (1), 5. | |
dc.relation | Paniz Mondolfi, A. E., Duffey, G. B., Horton, L. E., Tirado, M., Reyes Jaimes, O., Perez-Alvarez, A., & Zerpa, O. (2012). Intermediate/borderline disseminated cutaneous leishmaniasis. International Journal of Dermatology, 52(4), 446–455. | |
dc.relation | Paternina, M., Díaz, Y., Paternina, L., Bejarano, E. (2012). Alta prevalencia de infección por Leishmania (Kinetoplastidae: Trypanosomatidae) en perros del norte de Colombia. Biomédica; 33:375-82. doi: http://dx.doi.org/10.7705/biomedica.v33i3.780 | |
dc.relation | Patino, L. H., Mendez, C., Rodriguez, O., Romero, Y., Velandia, D., Alvarado, M., ... & Ramírez, J. D. (2017). Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS neglected tropical diseases, 11(8), e0005876. | |
dc.relation | Patiño, LH, Méndez, C., Rodríguez, O., Romero, Y., Velandia, D., Alvarado, M.,… Ramírez, JD (2017). Distribución espacial, especies de Leishmania y rasgos clínicos de los casos de leishmaniasis cutánea en el ejército colombiano. PLOS Enfermedades tropicales desatendidas, 11 (8), e0005876. | |
dc.relation | Pedras, M. J., Carvalho, J. de P., Silva, R. E. da, Ramalho, D. B., Senna, M. C. R. de, Moreira, H. S. A., Cota, G. (2018). Mucosal leishmaniasis: the experience of a Brazilian referral center. Revista Da Sociedade Brasileira de Medicina Tropical, 51(3), 318–323. | |
dc.relation | Peloi, L. S., Biondo, C. E. G., Kimura, E., Politi, M. J., Lonardoni, M. V. C., Aristides, S. M. A., Silveira, T. G. V. (2011). Photodynamic therapy for American cutaneous leishmaniasis: The efficacy of methylene blue in hamsters experimentally infected with Leishmania (Leishmania) amazonensis. Experimental Parasitology, 128(4), 353–356. | |
dc.relation | Pereira Ribeiro, J. B., Miranda-Vilela, A. L., Santarém Amorim, A. A., Debastiani Garcia, R., Moreira, J. R., Gomes, C. M., … Ribeiro Sampaio, R. N. (2019). Study of the efficacy of N-methyl glucamine antimoniate (SbV) associated with photodynamic therapy using liposomal chloroaluminium phthalocyanine in the treatment of cutaneous leishmaniasis caused by Leishmania (L.) amazonensis in C57BL6 mice. Photodiagnosis and Photodynamic Therapy. doi:10.1016/j.pdpdt.2019.04.004 | |
dc.relation | Pifano, A., Souza, E., Pacheco, F., Souza, F., Floeter, L., Maroni, C. (2011). Leishmania spp. in Didelphis albiventris and Micoureus paraguayanus (Didelphimorphia: Didelphidae) of Brazil. Veterinary Parasitology. 176 (2-3), 112-119. | |
dc.relation | Ponte-Sucre, A., Gamarro, F., Dujardin, J.-C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLOS Neglected Tropical Diseases, 11(12), e0006052. | |
dc.relation | Prakash, O., Sundar, S. (2015). Developments in Diagnosis of Visceral Leishmaniasis in the Elimination Era. Journal of Parasitology Research. 239469. | |
dc.relation | Quaresma, P. F., de Brito, C. F. A., Rugani, J. M. N., Freire, J. de M., Baptista, R. de P., Moreno, E. C., … Gontijo, C. M. F. (2018). Distinct genetic profiles of Leishmania (Viannia) braziliensis associate with clinical variations in cutaneous-leishmaniasis patients from an endemic area in Brazil. Parasitology, 145(09), 1161–1169. doi:10.1017/s0031182018000276 | |
dc.relation | Ramalho-Ortigão, J. M., Kamhawi, S., Joshi, M. B., Reynoso, D., Lawyer, P. G., Dwyer, D. M., Valenzuela, J. G. (2005). Characterization of a blood activated chitinolytic system in the midgut of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Molecular Biology, 14(6), 703–712. | |
dc.relation | Ramírez, JD., Hernández, C. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. (2016). Scientific Report. 6: 28266. | |
dc.relation | Ravis, W. R., Llanos-Cuentas, A., Sosa, N., Kreishman-Deitrick, M., Kopydlowski, K. M., Nielsen, C., ... & Grogl, M. (2013). Pharmacokinetics and absorption of paromomycin and gentamicin from topical creams used to treat cutaneous leishmaniasis. Antimicrobial agents and chemotherapy, 57(10), 4809-4815. | |
dc.relation | Reiner, SL, y Locksley, RM (1995). La regulación de la inmunidad a Leishmania Major. Revisión anual de inmunología, 13 (1), 151-177. doi: 10.1146 / annurev.iy.13.040195.001055 | |
dc.relation | Ribeiro, JBP, Miranda-Vilela, AL, Graziani, D., Gomes, MR de A., Amorim, AAS, García, RD,… Sampaio, RNR (2016). Evaluación de la eficacia de la miltefosina sistémica asociada con la terapia fotodinámica con ftalocianina cloroaluminio liposomal en el tratamiento de la leishmaniasis cutánea causada por Leishmania (L.) amazonensis en ratones C57BL / 6. Fotodiagnóstico y terapia fotodinámica, 13, 282–290. doi: 10.1016 / j.pdpdt.2015.08.006 | |
dc.relation | Rico, C. I., Rodríguez, J., Conde, C. A., Mantilla, J. C., & Escobar, P. (2013). Permeación en piel y biodistribución de una nanoemulsión de ftalocianina de aluminio clorada (PcAlCl) aplicada tópicamente en ratas Wistar. Rev Argent Dermatol, 94(2). | |
dc.relation | Roblero-Bartolón, G. V., & Ramón-Gallegos, E. (2015). Uso de nanopartículas (NP) en la terapia fotodinámica (photodynamic therapy [PDT]) contra el cáncer. Gaceta medica de Mexico, 151(1), 85-98. | |
dc.relation | Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A., & Bates, P. A. (2004). Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, 430(6998), 463-7. | |
dc.relation | Rogers, M., Ilg, T. (2004) La transmisión de leishmaniasis cutánea por moscas de arena se ve reforzada por la regurgitación de Fppg. Naturaleza. 430 (6998): 463-467. | |
dc.relation | Rogers, ME., Chance, ML., Bates, PA. (2002). The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology.124: 495-507. | |
dc.relation | Romano, A., Carneiro, M. B., Doria, N. A., Roma, E. H., Ribeiro-Gomes, F. L., Inbar, E., ... & Peters, N. C. (2017). Divergent roles for Ly6C+ CCR2+ CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS pathogens, 13(6), e1006479. | |
dc.relation | Roque, A. L. R., & Jansen, A. M. (2014). Wild and synanthropic reservoirs of Leishmania species in the Americas. International Journal for Parasitology: Parasites and Wildlife, 3(3), 251–262. | |
dc.relation | Roque, A. L., & Jansen, A. M. (2014). Wild and synanthropic reservoirs of Leishmania species in the Americas. International journal for parasitology. Parasites and wildlife, 3(3), 251-62. | |
dc.relation | Rossi, M., y Fasel, N. (2017). ¿Cómo dominar el sistema inmunitario del huésped? ¡Los parásitos Leishmania tienen las soluciones! Inmunología internacional, 30 (3), 103-111. doi: 10.1093 / intimm / dxx075 | |
dc.relation | Rueda, Y., Santos, M., Mantilla, D., Pinilla, A., Díaz, M., Vera, A., Carreño, H., Mantilla, J., Escobar, P. (2017). Transferomas conteniendo ftalocianina de aluminio clorada como alternativa terapeútica en Leishmaniasis cutánea: permeabilidade y biodistribución em rata Wistar. Revista Científica Sakud Uninorte; 34:2. dx.doi.org/10.14482/sun.34.2.936. | |
dc.relation | Saberi, AH, Fang, Y. y McClements, DJ (2015). Formación de sistemas de suministro basados en emulsión ópticamente transparentes térmicamente reversibles utilizando emulsificación espontánea. Materia blanda , 11 (48), 9321-9329. | |
dc.relation | Salazar Gomis, M. (2015). Síntesis y caracterización de ftalocianinas de silicio como precursores de fármacos para terapia fotodinámica contra el cáncer. | |
dc.relation | Salgado-Almario, J., Hernández, C. A., & Ovalle, C. E. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomédica, 39(2). | |
dc.relation | Samartino, L., Eddi, C. (2010).Zoonosis de las áreas urbanas y periurbanas de América Latina. Revista Veterinaria Argentina, XXXV, 368. | |
dc.relation | Samuelson, J., Lerner, E., Tesh, R., & Titus, R. (1991). A mouse model of Leishmania braziliensis braziliensis infection produced by coinjection with sand fly saliva. Journal of Experimental Medicine, 173(1), 49-54. | |
dc.relation | Sandoval Pacheco, C. M., Araujo Flores, G. V., Favero Ferreira, A., Sosa Ochoa, W., Ribeiro da Matta, V. L., Zúniga Valeriano, C., … Dalastra Laurenti, M. (2018). Histopathological features of skin lesions in patients affected by non-ulcerated or atypical cutaneous leishmaniasis in Honduras, Central America. International journal of experimental pathology, 99(5), 249–257. doi:10.1111/iep.12295 | |
dc.relation | Sansaloni-Pastor, Bouilloux, & Lange. (2019). The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals, 12(4), 148. doi:10.3390/ph12040148 | |
dc.relation | Saporito, L., Giammarco, G. (2013). Visceral leishmaniasis: host–parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. International Journal of Infectious Diseases. 17: 8, Pages e572–e576. | |
dc.relation | Savoia, D. (2015). Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries 9:588-596. | |
dc.relation | Schaferkorting, M., Mehnert, W., & Korting, H. (2007). Lipid nanoparticles for improved topical application of drugs for skin diseases☆. Advanced Drug Delivery Reviews, 59(6), 427–443. doi:10.1016/j.addr.2007.04.006 | |
dc.relation | Schwartz, J. (2017). Pharmaco-and immunotherapeutic strategies for the topical treatment of cutaneous leishmaniasis. | |
dc.relation | Schwartz, J., Moreno, E., Calvo, A., Blanco, L., Fernández-Rubio, C., Sanmartín, C., ... Espuelas, S. (2018). Combinación de paromomicina más anticuerpos humanos anti-TNF-α para controlar la respuesta inflamatoria local en BALB / ratones con lesiones de leishmaniasis cutánea. Revista de Ciencias Dermatológicas. doi: 10.1016 / j.jdermsci.2018.07.005 | |
dc.relation | Scorza, B., Carvalho E., Wilson M. (2017). Cutaneous Manifestations of Human and Murine Leishmaniasis. International Journal for Molecular Sciences.18 (6): 1296 | |
dc.relation | Seifert, K., & Croft, S. L. (2006). In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrobial agents and chemotherapy, 50(1), 73-79. | |
dc.relation | Shadem, K. (2006). Phlebotomine sand flies and Leishmania parasites: friends or foes?. Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD 20892, USA. 22,9, p439–445. | |
dc.relation | Shah, P., Bhalodia, D., & Shelat, P. (2010). Nanoemulsion: a pharmaceutical review. Systematic Reviews in Pharmacy, 1(1). | |
dc.relation | Sharon, M., Gossage, M., Rogers E. (2010). Two separate growth phases during the development of Leishmania in sandflies: implications for understanding the life cycle. Int J Parasitology. Manuscript of the author. | |
dc.relation | Silveira, F. T., Lainson, R., De Castro Gomes, C. M., Laurenti, M. D., & Corbett, C. E. P. (2009). Immunopathogenic competences of Leishmania (V.) braziliensis and L.(L.) amazonensis in American cutaneous leishmaniasis. Parasite immunology, 31(8), 423-431. | |
dc.relation | Silveira, FT, Lainson, R., DE Castro Gomes, CM, Laurenti, MD, y Corbett, CEP (2009). Competencias inmunopatógenas de Leishmania (V.) braziliensis y L. (L.) amazonensisin leishmaniasis cutánea americana. Parasite Immunology, 31 (8), 423–431. doi: 10.1111 / j.1365-3024.2009.01116.x | |
dc.relation | Singh, J., Khan, M. I., Yadav, S. P. S., Srivastava, A., Sinha, K. K., Das, P., & Kundu, B. (2017). L-Asparaginase of Leishmania donovani: Metabolic target and its role in Amphotericin B resistance. International Journal for Parasitology: Drugs and Drug Resistance, 7(3), 337-349. | |
dc.relation | Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5(6), 485–497. | |
dc.relation | Smith, D., Peacock, C., , A. (2007) Comparative genomics: From genotype to disease phenotype in the leishmaniases Author links open overlay. En: International Journal for Parasitology. 37, 11, P1173-1186. | |
dc.relation | Solomon, M., Pavlotsky, F., Leshem, E., Ephros, M., Trau, H., & Schwartz, E. (2011). Liposomal amphotericin B treatment of cutaneous leishmaniasis due to Leishmania tropica. Journal of the European Academy of Dermatology and Venereology, 25(8), 973-977. | |
dc.relation | Sosa, N., Pascale, J. M., Jiménez, A. I., Norwood, J. A., Kreishman-Detrick, M., Weina, P. J., ... & Ransom, J. (2019). Topical paromomycin for New World cutaneous leishmaniasis. PLoS neglected tropical diseases, 13(5), e0007253. | |
dc.relation | Soto, J., Grogl, M., Berman, J., & Olliaro, P. (1994). Limited efficacy of injectable aminosidine as single-agent therapy for Colombian cutaneous leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 88(6), 695-698. | |
dc.relation | Soto, J., Soto, P., Ajata, A., Luque, C., Tintaya, C., Paz, D., ... & Berman, J. (2018). Topical 15% paromomycin-aquaphilic for bolivian Leishmania braziliensis cutaneous leishmaniasis: a randomized, placebo-controlled trial. Clinical Infectious Diseases, 68(5), 844-849. | |
dc.relation | Souza Castro, L., de Oliveira França, A., de Castro Ferreira, E., da Costa Lima Júnior, M. S., Gontijo, C. M. F., Pereira, A. A. S., & Dorval, M. E. C. (2018). Characterization of Leishmania species from Central-West Region of Brazil. Parasitology Research, 117(6), 1839–1845. | |
dc.relation | Subramanian, A., & Sarkar, R. R. (2018). Perspectives on Leishmania Species and Stage-specific Adaptive Mechanisms. Trends in Parasitology; 1802,14. | |
dc.relation | Sundar, S., & Singh, B. (2014). Identifying vaccine targets for anti-leishmanial vaccine development. Expert review of vaccines, 13(4), 489-505. | |
dc.relation | Sunter, J., Gull, K. (2017). Form, function, function and pathogenicity of Leishmania: from descriptions of textbooks to biological understanding. Open Biology. 7 (9): 170165. | |
dc.relation | Suri, S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2(1), 16. doi:10.1186/1745-6673-2-16 | |
dc.relation | Tayfuroğlu, Ö., Kılıçarslan, F. A., Atmaca, G. Y., & Erdoğmuş, A. (2018). Synthesis, characterization of new phthalocyanines and investigation of photophysical, photochemical properties and theoretical studies. Journal of Porphyrins and Phthalocyanines, 22(01n03), 250–265. doi:10.1142/s1088424618500281 | |
dc.relation | Taylor, V. M., Cedeño, D. L., & Robledo, S. M. (2011). Phototherapy in treatment of cutaneous leishmaniasis. Infectio, 15(4), 277-288. | |
dc.relation | Taylor, V., Cedeño, V., Robledo, S. (2011). Phototherapy in treatment of cutaneous leishmaniasis. Revista de la asociación Colombiana de Infectología. 15(4): 277-288 | |
dc.relation | Tim, M. (2015). Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. Journal of Photochemistry and Photobiology B: Biology, 150, 2–10. doi:10.1016/j.jphotobiol.2015.05.010 | |
dc.relation | Torres-Guerrero, E., & Arenas, R. (2018). Leishmaniasis. Alternativas terapéuticas actuales. Dermatología Revista Mexicana, 62(5), 400-409. | |
dc.relation | Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: a review. F1000Research, 6, 750. doi:10.12688/f1000research.11120.1 | |
dc.relation | Trommer, H., & Neubert, R. H. H. (2006). Overcoming the Stratum Corneum: The Modulation of Skin Penetration. Skin Pharmacology and Physiology, 19(2), 106–121. doi:10.1159/000091978 | |
dc.relation | Tuon, Felipe Francisco, Santos, Carolina Rocio, Cieslinski, Juliette, Souza, Regina Maia de, Imamura, Rui, & Amato, Valdir Sabbaga. (2018). Treatment of mucosal leishmaniasis with amphotericin B lipid complex (ABLC). Revista do Instituto de Medicina Tropical de São Paulo, 60, e71. Epub November 08, 2018.https://dx.doi.org/10.1590/s1678-9946201860071 | |
dc.relation | ULIANA, S. R. B., TRINCONI, C. T., & COELHO, A. C. (2017). Chemotherapy of leishmaniasis: present challenges. Parasitology, 145(04), 464–480.doi:10.1017/s0031182016002523 | |
dc.relation | Van Bocxlaer, K., Yardley, V., Murdan, S., & Croft, S. L. (2016). Drug permeation and barrier damage inLeishmania-infected mouse skin. Journal of Antimicrobial Chemotherapy, 71(6), 1578–1585. doi:10.1093/jac/dkw012 | |
dc.relation | Velez, I. D., Carrillo, L. M., Lopez, L., Rodriguez, E., & Robledo, S. M. (2012). An Epidemic Outbreak of Canine Cutaneous Leishmaniasis in Colombia Caused by Leishmania braziliensis and Leishmania panamensis. American Journal of Tropical Medicine and Hygiene, 86(5), 807–811. | |
dc.relation | Vélez, I., Jiménez, A. (2015). Leishmaniasis cutánea diseminada en Colombia: informe de 27 casos. Caso Rep Dermatol. 7 (3): 275-286. | |
dc.relation | Vera, A., Casadiego, O., Mantilla, J., & Escobar, P. (2018). Evaluación de formulaciones de ketoconazol para uso tópico en leishmaniasis cutánea por Leishmania (Viannia). Revista Peruana De Medicina Experimental Y Salud PúBlica, 35(3), 476-82. | |
dc.relation | Vera-Izaguirre, D., Veja-Memije, E., Quintanilla, M., Arenas, R. (2006). Leishmaniasis. Revisión. DermatologíaCMQ2006;4(4):252-260 | |
dc.relation | Vicente, C. R., & Falqueto, A. (2018). Differentiation of mucosal lesions in mucocutaneous leishmaniasis and paracoccidioidomycosis. PloS one, 13(11), e0208208. doi:10.1371/journal.pone.0208208 | |
dc.relation | Vicentini, C., Tylcz, J.-B., Maire, C., Mordon, S., & Mortier, L. (2017). Terapia fotodinámica. EMC - Dermatología, 51(3), 1–8. doi:10.1016/s1761-2896(17)85934-3 | |
dc.relation | Wanasen, N., Xin, L., y Soong, L. (2008). Papel patógeno de las células B y anticuerpos en la infección murina por Leishmania amazonensis. Revista Internacional de Parasitología, 38 (3-4), 417–429. doi: 10.1016 / j.ijpara.2007.08.010 | |
dc.relation | Wijnant, G.-J., Van Bocxlaer, K., Yardley, V., Harris, A., Alavijeh, M., Silva-Pedrosa, R., ... Croft, SL (2018). Eficacia comparativa, toxicidad y biodistribución de las formulaciones liposomales de anfotericina B Fungisome® y AmBisome® en la leishmaniasis cutánea murina. Revista Internacional de Parasitología: Drogas y Resistencia a las Drogas, 8 (2), 223–228. doi: 10.1016 / j.ijpddr.2018.04.001 | |
dc.relation | Wijnant, G.-J., Van Bocxlaer, K., Yardley, V., Murdan, S., & Croft, S. L. (2017). Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 61(8). doi:10.1128/aac.00358-17 | |
dc.relation | Wolf Nassif, P., De Mello, T. F. P., Navasconi, T. R., Mota, C. A., Demarchi, I. G., Aristides, S. M. A., … Silveira, T. G. V. (2017). Safety and efficacy of current alternatives in the topical treatment of cutaneous leishmaniasis: a systematic review. Parasitology, 144(08), 995–1004. doi:10.1017/s0031182017000385 | |
dc.relation | Yamazaki, N., Naganuma, K., Nagai, M., Ma, G., & Omi, S. (2003). Preparation of W/O (Water‐in‐Oil) Emulsions Using a PTFE (Polytetrafluoroethylene) Membrane—A New Emulsification Device. Journal of Dispersion Science and Technology, 24(2), 249–257. doi:10.1081/dis-120019976 | |
dc.relation | Zur, E. (2019). Topical Treatment of Cutaneous Leishmaniasis in Israel, Part 1. International journal of pharmaceutical compounding, 23(3), 200-207. | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | Derechos Reservados - Universidad de Santander, 2019 | |
dc.title | Efectividad in vivo de una nanoemulsión de paramomicina y ftalocianina de aluminio clorada para el tratamiento de leishmaniasis cutánea | |
dc.type | Trabajo de grado - Maestría | |