dc.contributorGarcía Sánchez, Liliana Torcoroma
dc.contributorLeal Pinto, Sandra-Milena
dc.creatorMoreno Moreno, Erika Marcela
dc.date.accessioned2018-11-23T16:34:43Z
dc.date.available2018-11-23T16:34:43Z
dc.date.created2018-11-23T16:34:43Z
dc.date.issued2017-06-09
dc.identifierT 86.17 M672c
dc.identifierhttps://repositorio.udes.edu.co/handle/001/637
dc.description.abstractLa Enfermedad de Chagas es una infección causada por el protozoario Trypanosoma cruzi, la cual es caracterizada por un prolongado curso silencioso y complejas manifestaciones clínicas. Actualmente, no existe evidencia contundente de quimioterapéuticas eficaces, lo que hace obligatoria la búsqueda de nuevos agentes tripanocidas más efectivos. Bajo este escenario, fármacos extraídos de plantas resultan prometedores, teniendo en cuenta su baja toxicidad y amplio espectro farmacológico. De acuerdo con esto, en este trabajo se evaluó la actividad tripanocida in vitro de aceites esenciales (AEs) de Lippia alba y de sus terpenos bioactivos (óxido de cariofileno, citral, limoneno y carvona), caracterizándose el mecanismo de muerte celular inducido contra T.cruzi. Los resultados fueron expresados como la concentración inhibitoria o citotóxica 50 (CI50 y CC50, respectivamente), realizando regresión sigmoidal mediante el Software estadístico MsxlfitTM. El fenotipo de muerte fue rastreado por microscopía óptica y de fluorescencia, citometría de flujo y electroforesis de ADN. El análisis estadístico se realizó por ANOVA de Welch (software SPSS 15.0). En las condiciones testadas, los AEs y terpenos de L. alba ejercieron efectos inhibitorios distintos en los tres estadios parasitarios evaluados (p=0.000). Los AEs del quimiotipo Citral exhibieron concentraciones inhibitorias medias menores (Epimastigotes: CI50 13,6±1,5μg/mL; Tripomastigotes: CI50 21,9±1,4 μg/mL; Amastigotes: CI50 74,1±4,4μg/mL) que las alcanzadas con los aceites del quimiotipo Carvona (Epimastigotes: CI50 88,2±3,7μg/mL; Tripomastigotes: CI50 44,9±2,5μg/mL; Amastigotes: CI50 >150μg/mL). El limoneno representó el terpeno de mayor selectividad (Epimastigotes: IS 7,1; Tripomastigotes: IS 32,8; Amastigotes: IS 10,3) y menor toxicidad sobre células Vero (Limoneno: CC50 297,1±2,4μg/mL). Además, el limoneno evidenció una interacción sinérgica in vitro con el Benznidazol (Epimastigotes CIF=0,44±0,13; tripomastigotes CIF=0,42±0,10; amastigotes CIF=0,58±0,13μg/mL) y con el óxido de cariofileno (Epimastigotes: CIF 0,49; Tripomastigotes: CIF 0,45; Amastigotes: CIF 0,71μg/mL). Los análisis celulares sugieren que la muerte celular observada en el T. cruzi podría ser mediada por un mecanismo tipo-apoptótico.
dc.description.abstractChagas Disease is caused by infection of Trypanosoma cruzi parasite. In general, the course of the disease is characterized by a prolonged silent phase and a complex clinical presentation. Currently, there is no compelling evidence of effective chemotherapeutics, making compulsory the research on more effective and selective therapies.In this way, plants offer a promissory reserve of bioactive molecules, take into account their low toxicity and width pharmacologic spectrum. In this work, the in vitro trypanocidal activity of Lippia alba essential oils (EOs) and their bioactive terpenes (caryophyllene oxide, citral, limonene and carvone) was evaluated, following the death mechanism induced on T. cruzi cells. The results were expressed as Inhibitory Concetration 50 (IC50) or Cytotoxic Concentration (CC50) by sigmoidal regression using the statistical software MsxlfitTM. Optical and fluorescent microscopy, flow cytometry, and DNA electrophoresis were used for characterization of the cell death phenotype. The statistical analysis was made by Welch’s ANOVA (software SPSS 15.0). In the conditions tested, the L. alba EOs and their terpenes exhibed a different tripanocidal performance on the diverse parasites stages (p=0.000). Citral chemotype oils evidenced lower IC50 (Epimastigotes: IC50 13,6±1,5μg/mL; Trypomastigotes: IC50 21,9±1,4 μg/mL, and Amastigotes: IC50 74,1±4,4μg/mL) than Carvone chemotype EOs (Epimastigotes: IC50 88,2±3,7μg/mL; Trypomastigotes: IC50 44,9±2,5μg/mL, and Amastigotes: IC50 >150μg/mL). The better selectivity index (SI) was achieved by the monoterpene limonene (Epimastigotes: SI=7,1; Trypomastigotes: SI=32,8, and Amastigotes: SI=10,3), with a CC50 value on Vero cells of 297,1±2,4μg/mL. Limonene presented in vitro synergistic interaction with Benznidazole (with a Fractional Inhibitory Concentration (FIC) of 0,44±0,13, 0,42±0,10 and 0,58±0,13μg/mL for epimastigotes, trypomastigotes, and intracellular amastigotes, respectively), and with caryophyllene oxide (Epimastigotes: FIC=0,49; Tripomastigotes: FIC=0,45; Amastigotes: FIC=0,71). The cellular analysis suggested that these oils or their bioactive terpenes (caryophyllen oxide/limonene) could be inducing cell death by an apoptotic like mechanisms on T. cruzi.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2017
dc.publisherFacultad Ciencias de la Salud
dc.publisherMaestría en Investigación en enfermedades Infecciosas
dc.relationAdachi, M., Zhang, Y., Zhao, X., Minami, T., Kawamura, R., Hinoda, Y., & Imai, K. (2004). Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clinical cancer research, 10(11), 3853-3862.
dc.relationAdachi, M., Zhang, Y., Zhao, X., Minami, T., Kawamura, R., Hinoda, Y., & Imai, K. (2004). Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clinical cancer research, 10(11), 3853-3862.
dc.relationAguiar, J. S., Costa, M. C., Nascimento, S. C., & Sena, K. X. (2008). Antimicrobial activity of Lippia alba (Mill.) NE Brown (Verbenaceae). Revista Brasileira de Farmacognosia, 18(3), 436-440.
dc.relationAkematsu, T., & Endoh, H. (2010). Role of apoptosis-inducing factor (AIF) in programmed nuclear death during conjugation in Tetrahymena thermophila. BMC cell biology, 11(1), 13.
dc.relationAli, M., Al-Olayan, E. M., Lewis, S., Matthews, H., & Hurd, H. (2010). Naturally occurring triggers that induce apoptosis-like programmed cell death in Plasmodium berghei ookinetes. PLoS One, 5(9), e12634.
dc.relationAlviano, D. S., Barreto, A. L. S., de Almeida Dias, F., de Almeida Rodrigues, I., dos Santos Rosa, M. D. S., Alviano, C. S., & de Araújo Soares, R. M. (2012). Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Frontiers in microbiology, 283(3), 60-69.
dc.relationAmeisen, J. C., Idziorek, T., Billaut-Mulot, O., Loyens, M., Tissier, J. P., Potentier, A., & Ouaissi, A. (1995). Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): implications for the evolutionary origin and role of programmed cell death in the control of cell proliferation, differentiation and survival. Cell death and differentiation, 2(4), 285-300.
dc.relationAnaruma, N. D., Schmidt, F. L., Duarte, M. C. T., Figueira, G. M., Delarmelina, C., Benato, E. A., & Sartoratto, A. (2010). Control of Colletotrichum gloeosporioides (Penz.) Sacc. in yellow passion fruit using Cymbopogon citratus essential oil. Brazilian Journal of Microbiology, 41(1), 66-73.
dc.relationApt, W., Heitmann, I., Jercic, L., Isabel, M., Jofré, L., Noemí, I., & Zulantay, I. (2008). Guías clínicas de la enfermedad de Chagas: Parte I. Introducción y epidemiología. Revista chilena de infectología, 25(3), 189-193.
dc.relationArambage, S. C., Grant, K. M., Pardo, I., Ranford-Cartwright, L., & Hurd, H. (2009). Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasites & Vectors, 2(1), 32.
dc.relationAstani, A., & Schnitzler, P. (2014). Antiviral activity of monoterpenes beta-pinene and limonene against herpes simplex virus in vitro. Iranian journal of microbiology, 6(3), 149.
dc.relationZheng, G. Q., Kenney, P. M., & Lam, L. K. (1992). Anethofuran, carvone, and limonene: potential cancer chemoprotective agents from dill weed oil and caraway oil. Planta medica, 58(04), 338-341.
dc.relationZingales, B., Andrade, S. G., Briones, M. R. D. S., Campbell, D. A., Chiari, E., Fernandes, O., & Miles, M. A. (2009). A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Memorias do Instituto Oswaldo Cruz, 104(7), 1051-1054.
dc.relationZingales, B., Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M., & Andrade, S. G. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution, 12(2), 240-253.
dc.relationZingales, B., Miles, M. A., Moraes, C. B., Luquetti, A., Guhl, F., Schijman, A. G., & Ribeiro, I. (2014). Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Memórias do Instituto Oswaldo Cruz, 109(6), 828-833.
dc.relationCampos, M. C. O., Castro-Pinto, D. B., Ribeiro, G. A., Berredo-Pinho, M. M., Gomes, L. H. F., da Silva Bellieny, M. S., & Leon, L. L. (2013). P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parásitology research, 112(6), 2341-2351.
dc.relationCardillo, F., de Pinho, R. T., Antas, P. R. Z., & Mengel, J. (2015). Immunity and immune modulation in Trypanosoma cruzi infection. Pathogens and Disease, 73(9).
dc.relationCardoso, J., & Soares, M. J. (2010). In vitro effects of citral on Trypanosoma cruzi metacyclogenesis. Memorias do Instituto Oswaldo Cruz, 105(8), 1026-1032.
dc.relationCarlier, Y., Torrico, F., Sosa-Estani, S., Russomando, G., Luquetti, A., Freilij, H., & Vinas, P. A. (2011). Congenital Chagas disease: recommendations for diagnosis, treatment and control of newborns, siblings and pregnant women. PLoS Negl Trop Dis, 5(10), e1250.
dc.relationCastillo-Riquelme, M., Guhl, F., Turriago, B., Pinto, N., Rosas, F., Martínez, M. F., & Campbell-Lendrum, D. (2008). The costs of preventing and treating chagas disease in Colombia. PLoS Negl Trop Dis, 2(11), e336.
dc.relationHotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K., & Periago, M. R. (2008). The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis, 2(9), e300.
dc.relationPrata, A. (2001). Clinical and epidemiological aspects of Chagas disease. The Lancet infectious diseases, 1(2), 92-100.
dc.relationCastro, A., Montalto de Mecca, M., Deaz Gomez, M. I., & Castro, D. (2015). Chagas disease: The contribution of the Center for Toxicological Research. Acta Bioquimica Clinica Latinoamericana, 49(1), 73-82.
dc.relationCenters for Disease Control and Prevention. (2013)American trypanosomiasis: epidemiology and risk factors. Atlanta (Georgia): CDC.
dc.relationChaimovitsh, D., Altshuler, O., Belausov, E., Abu‐Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2012). The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant biology, 14(2), 354-364.
dc.relationCharriaut-Marlangue, C., & Ben-Ari, Y. (1995). A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport, 7(1), 61-64.
dc.relationChee, H. Y., Kim, H., & Lee, M. H. (2009). In vitro antifungal activity of limonene against Trichophyton rubrum. Mycobiology, 37(3), 243-246.
dc.relationCheikh Ali, Z., Adiko, M., Bouttier, S., Bories, C., Okpekon, T., Poupon, E., & Champy, P. (2011). Composition, and antimicrobial and remarkable antiprotozoal activities of the essential oil of rhizomes of Aframomum sceptrum K. Schum. (Zingiberaceae). Chemistry & biodiversity, 8(4), 658-667.
dc.relationChou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological reviews, 58(3), 621-681.
dc.relationChou, T. C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in enzyme regulation, 22, 27-55.
dc.relationCicció, J., & Ocampo, R. (2010). Distribución biogeográfica de Lippia alba (Mill.) NE Br. ex Britton & Wilson y quimiotipos en América y el Caribe. Normalización de Productos Naturales Obtenidos de Especies de la Flora Aromática Latinoamericana EdiPUCRS, Porto Alegre p, 107-130.
dc.relationClinicalTrials.gov. A Study of the Use of Oral Posaconazole (POS) in the Treatment of Asymptomatic Chronic Chagas Disease (P05267) (STOP CHAGAS). https:// clinicaltrials.gov/ct2/show/NCT01377480?term=nct01377480& rank=1 (Accessed Feb 13, 2017).
dc.relationRabi, T., & Bishayee, A. (2009). Terpenoids and breast cancer chemoprevention. Breast cancer research and treatment, 115(2), 223-239..
dc.relationHotez, P. J., Dumonteil, E., Heffernan, M. J., & Bottazzi, M. E. (2013). Innovation for the ‘bottom 100 million’: eliminating neglected tropical diseases in the Americas. In Hot Topics in Infection and Immunity in Children IX (pp. 1-12). Springer New York.
dc.relationClinicalTrials.gov. CHICAMOCHA 3 - Equivalence of Usual Interventions for Trypanosomiasis (EQUITY) (CHICAMOCHA-3). https://clinicaltrials.gov/ct2/show/NCT02369978?term=chicamocha-3&rank=1 Accessed Feb 21, 2017)
dc.relationCosta, D. C. M., Vermelho, A. B., Almeida, C. A., Dias, E. P. D. S., Cedrola, S. M. L., Arrigoni-Blank, M. D. F., & Alviano, D. S. (2014). Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. Journal of enzyme inhibition and medicinal chemistry, 29(1), 12-17.
dc.relationCosta, E. V., Dutra, L. M., Salvador, M. J., Ribeiro, L. H. G., Gadelha, F. R., & de Carvalho, J. E. (2013). Chemical composition of the essential oils of Annona pickelii and Annona salzmannii (Annonaceae), and their antitumour and trypanocidal activities. Natural product research, 27(11), 997-1001.
dc.relationCoura, J. R. (1966). Contribução ao estudo da doença de Chagas no estado da Guanabara. Revista Brasileira De Malariologia E Doencas Tropicais, 18, 9-98.
dc.relationCoura, J. R. (2009). Present situation and new strategies for Chagas disease chemotherapy: a proposal. Memórias do Instituto Oswaldo Cruz, 104(4), 549-554.
dc.relationCoura, J. R. (2015). The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions-A comprehensive review. Memórias do Instituto Oswaldo Cruz, 110(3), 277-282.
dc.relationCoura, J. R., & Borges-Pereira, J. (2010). Chagas disease: 100 years after its discovery. A systemic review. Acta tropica, 115(1), 5-13.
dc.relationCoura, J. R., & Dias, J. C. P. (2009). Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Memórias do Instituto Oswaldo Cruz, 104, 31-40.
dc.relationCoura, J. R., & Viñas, P. A. (2010). Chagas disease: a new worldwide challenge. Nature, 465(n7301_supp), S6-S7.
dc.relationRajao, M. A., Furtado, C., Alves, C. L., Passos‐Silva, D. G., Moura, M. B., Schamber‐Reis, B. L., & Mendes, I. C. (2014). Unveiling Benznidazole's mechanism of action through overexpression of DNA repair proteins in Trypanosoma cruzi. Environmental and molecular mutagenesis, 55(4), 309-321.
dc.relationCoura, J. R., Viñas, P. A., & Junqueira, A. C. (2014). Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries. Memórias do Instituto Oswaldo Cruz, 109(7), 856-862.
dc.relationAzambuja, C. R., Mattiazzi, J., Riffel, A. P. K., Finamor, I. A., de Oliveira Garcia, L., Heldwein, C. G., & Llesuy, S. F. (2011). Effect of the essential oil of Lippia alba on oxidative stress parameters in silver catfish (Rhamdia quelen) subjected to transport. Aquaculture, 319(1), 156-161.
dc.relationCroft, S. L., Barrett, M. P., & Urbina, J. A. (2005). Chemotherapy of trypanosomiases and leishmaniasis. Trends in parásitology, 21(11), 508-512.
dc.relationCruz Bermúdez, H. F., & Moreno Collazos, J. E. (2015). Seroprevalencia de tamizaje de Chagas y factores asociados a coinfecciòn en un banco de sangre de Colombia durante 2006-2011. Revista Médica de Risaralda, 21(1), 26-30.
dc.relationCucunubá, Z. M., Okuwoga, O., Basáñez, M. G., & Nouvellet, P. (2016). Increased mortality attributed to Chagas disease: a systematic review and meta-analysis. Parasites & vectors, 9(42), 1-13.
dc.relationCucunubá Z, Valencia C, Florez C, Leon C, Castellanos Y, Cardenas A. Pilot program for surveillance of congenital Chagas disease in Colombia 2010-2011. Int J Infect Dis. 2012;16:e343
dc.relationCucunubá, Z. M., Valencia-Hernández, C. A., Puerta, C. J., Sosa-Estani, S., Torrico, F., Cortés, J. A & Muller, E. Á. (2017). First Colombian consensus on congenital Chagas and clinical approach for women of child-bearing age diagnosed with Chagas. Infectio, 21(4).
dc.relationCunha, M. A., de Barros, F. M. C., de Oliveira Garcia, L., de Lima Veeck, A. P., Heinzmann, B. M., Loro, V. L., & Baldisserotto, B. (2010). Essential oil of Lippia alba: a new anesthetic for silver catfish, Rhamdia quelen. Aquaculture, 306(1), 403-406.
dc.relationCunha-Neto, E., Bilate, A. M., Hyland, K. V., Fonseca, S. G., Kalil, J., Engman, D. M., & Kalil, J. (2006). Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity, 39(1), 41-54.
dc.relationCunha¬Neto, E., & Chevillard, C. (2014). Chagas disease cardiomyopathy: immunopathology and genetics. Mediators of inflammation, 2014(1), 1¬11.
dc.relationRamírez, C. J., Jaramillo, C. A., del Pilar Delgado, M., Pinto, N. A., Aguilera, G., & Guhl, F. (2005). Genetic structure of sylvatic, peridomestic and domestic populations of Triatoma dimidiata (Hemiptera: Reduviidae) from an endemic zone of Boyaca, Colombia. Acta tropica, 93(1), 23-29.
dc.relationDa Rocha, C. Q., Queiroz, E. F., Meira, C. S., Moreira, D. R. M., Soares, M. B. P., Marcourt, L., & Wolfender, J. L. (2014). Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. Journal of natural products, 77(6), 1345-1350.
dc.relationDa Silva, T. B., Menezes, L. R., Sampaio, M. F., Meira, C. S., Guimarães, E. T., Soares, M. B., & Costa, E. V. (2013). Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Natural product communications, 8(3), 403-406.
dc.relationHyland, K. V., Leon, J. S., Daniels, M. D., Giafis, N., Woods, L. M., Bahk, T. J., & Engman, D. M. (2007). Modulation of autoimmunity by treatment of an infectious disease. Infection and immunity, 75(7), 3641-3650.
dc.relationDancey, J. E., & Chen, H. X. (2006). Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature reviews Drug discovery, 5(8), 649-659.
dc.relationDas, M., Mukherjee, S. B., & Shaha, C. (2001). Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. Journal of Cell Science, 114(13), 2461-2469.
dc.relationDas, R., Roy, A., Dutta, N., & Majumder, H. K. (2008). Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis, 13(7), 867-882.
dc.relationDavila, D. F. (2004). Sympathetic nervous system activation in chagasic patients with congestive heart failure. Journal of the American College of Cardiology, 43(9), 1723-1724.
dc.relationDávila, D. F., Núñez, T. J., Odreman, R., & de Dávila, C. A. M. (2005). Mechanisms of neurohormonal activation in chronic congestive heart failure: pathophysiology and therapeutic implications. International journal of cardiology, 101(3), 343-346.
dc.relationDe Barros Moreira Beltrão, H., de Paula Cerroni, M., de Freitas, D. R. C., das Neves Pinto, A. Y., da Costa Valente, V., Valente, S. A., & Sobel, J. (2009). Investigation of two outbreaks of suspected oral transmission of acute Chagas disease in the Amazon region, Para State, Brazil, in 2007. Tropical doctor, 39(4), 231-232.
dc.relationDe Figueiredo Diniz, L., Urbina, J. A., de Andrade, I. M., Mazzeti, A. L., Martins, T. A. F., Caldas, I. S., & Bahia, M. T. (2013). Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLoS Negl Trop Dis, 7(8), e2367.
dc.relationRamos, E. H., Moraes, M. M., Nerys, L. L. D. A., Nascimento, S. C., Militão, G. C., de Figueiredo, R. C., Da Camara, C. A. G., & Silva, T. G. (2014). Chemical composition, leishmanicidal and cytotoxic activities of the essential oils from Mangifera indica L. var. Rosa and Espada. BioMed research international, 2014.
dc.relationDe Noya, B. A., Díaz-Bello, Z., Colmenares, C., Ruiz-Guevara, R., Mauriello, L., Zavala-Jaspe, R., & Rivas, L. (2010). Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. Journal of Infectious Diseases, 201(9), 1308-1315.
dc.relationDe Paula Porto, M., Da Silva, G. N., Luperini, B. C. O., Bachiega, T. F., de Castro Marcondes, J. P., Sforcin, J. M., & Salvadori, D. M. F. (2014). Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages. Molecular biology reports, 41(11), 7043-7051
dc.relationDe Rissio, A. M., Riarte, A. R., García, M. M., Esteva, M. I., Quaglino, M., & Ruiz, A. M. (2010). Congenital Trypanosoma cruzi infection. Efficacy of its monitoring in an urban reference health center in a non-endemic area of Argentina. The American journal of tropical medicine and hygiene, 82(5), 838-845.
dc.relationIdu, M., & Osemwegie, O. O. (2007). Some medicinal flora of okomu forest reserve in Southern Nigeria. Research Journal of Medicinal Plant, 1(1), 29-31.
dc.relationDi Stasi, L. C., Oliveira, G. P., Carvalhaes, M. A., Queiroz-Junior, M., Tien, O. S., Kakinami, S. H., & Reis, M. S. (2002). Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia, 73(1), 69-91.
dc.relationDias, J. C. P. (2015). Evolution of Chagas disease screening programs and control programs: historical perspective. Global Heart, 10(3), 193-202.
dc.relationDíaz, M. L., & González, C. I. (2014). Enfermedad de Chagas agudo: transmisión oral de Trypanosoma cruzi como una vía de transmisión re-emergente. Revista de la Universidad Industrial de Santander. Salud, 46(2), 177-188.
dc.relationDíaz, M. L., Leal, S., Mantilla, J. C., Molina-Berríos, A., López-Muñoz, R., Solari, A., & Rugeles, C. I. G. (2015). Acute chagas outbreaks: molecular and biological features of Trypanosoma cruzi isolates, and clinical aspects of acute cases in Santander, Colombia. Parasites & vectors, 8(1), 608.
dc.relationDocampo, R. (1990). Sensitivity of parasites to free radical damage by antiparasitic drugs. Chemico-biological interactions, 73(1), 1-27.
dc.relationDos Santos, R. R., & Hudson, L. (1980). Trypanosoma cruzi: immunological consequences of parasite modification of host cells. Clinical and experimental immunology, 40(1), 36.
dc.relationRassi, A., & de Rezende, J. M. (2012). American trypanosomiasis (Chagas disease). Infectious disease clinics of North America, 26(2), 275-291.
dc.relationDuszenko, M., Figarella, K., Macleod, E. T., & Welburn, S. C. (2006). Death of a trypanosome: a selfish altruism. Trends in parásitology, 22(11), 536-542.
dc.relationEhlert, P. A. D., Ming, L. C., Marques, M. O. M., Fenandes, D. M., Rocha, W. A., Luz, J. M. Q., & Silva, R. F. (2013). Influência do horário de colheita sobre o rendimento e composição do óleo essencial de erva-cidreira brasileira [Lippia alba (Mill.) NE Br.]. Revista Brasileira de Plantas Medicinais, 72-77.
dc.relationEngman, D. M., & Leon, J. S. (2002). Pathogenesis of Chagas heart disease: role of autoimmunity. Acta tropica, 81(2), 123-132.
dc.relationEscobar, P., Milena Leal, S., Herrera, L. V., Martinez, J. R., & Stashenko, E. (2010). Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Memórias do Instituto Oswaldo Cruz, 105(2), 184-190.
dc.relationInstituto Nacional de Salud. (2012). Subdirección de vigilancia y control en salud pública. Protocolo de vigilancia y control de Chagas.
dc.relationEsteban, L., Montes, J. M., & Angulo, V. M. (2016). Diversidad de Triatominae (Hemiptera: Reduviidae) en Santander, Colombia: implicaciones epidemiológicas. Biomédica, 37(1).
dc.relationFabri, R. L., Nogueira, M. S., Moreira, J. D. R., Bouzada, M. L. M., & Scio, E. (2011). Identification of antioxidant and antimicrobial compounds of Lippia species by bioautography. Journal of medicinal food, 14(7-8), 840-846.
dc.relationFilardi, L. S., & Brener, Z. (1987). Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene, 81(5), 755-759.
dc.relationFivelman, Q. L., Adagu, I. S., & Warhurst, D. C. (2004). Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrobial agents and chemotherapy, 48(11), 4097-4102.
dc.relationFujinami, R. S., Von Herrath, M. G., Christen, U., & Whitton, J. L. (2006). Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical microbiology reviews, 19(1), 80-94.
dc.relationRassi, A., & Marin-Neto, J. A. (2010). Chagas disease. The Lancet, 375(9723), 1388-1402.
dc.relationGaluppo, S., Bacigalupo, A., García, A., Ortiz, S., Coronado, X., Cattan, P. E., & Solari, A. (2009). Predominance of Trypanosoma cruzi genotypes in two reservoirs infected by sylvatic Triatoma infestans of an endemic area of Chile. Acta tropica, 111(1), 90-93.
dc.relationGannavaram, S., Vedvyas, C., & Debrabant, A. (2008). Conservation of the pro-apoptotic nuclease activity of endonuclease G in unicellular trypanosomatid parasites. Journal of cell science, 121(1), 99-109.
dc.relationGarcía, L. T., Leal, A. F., Moreno, É. M., Stashenko, E. E., & Arteaga, H. J. (2017). Differential anti-proliferative effect on K562 leukemia cells of Lippia alba (Verbenaceae) essential oils produced under diverse growing, collection and extraction conditions. Industrial Crops and Products, 96, 140-148.
dc.relationGarcía, L. T., Leite, N. R., Alfonzo, J. D., & Thiemann, O. H. (2007). Effects of Trypanosoma brucei tryptophanyl-tRNA synthetases silencing by RNA interference. Memórias do Instituto Oswaldo Cruz, 102(6), 757-762.
dc.relationGascon, J., Bern, C., & Pinazo, M. J. (2010). Chagas disease in Spain, the United States and other non-endemic countries. Acta tropica, 115(1), 22-27.
dc.relationJackson, Y., Pinto, A., & Pett, S. (2014). Chagas disease in Australia and New Zealand: risks and needs for public health interventions. Tropical Medicine & International Health, 19(2), 212-218.
dc.relationGeromini, K. V. N., Roratto, F. B., Ferreira, F. G., Camilotti, J., Vidigal, T. M. A., Valle, J. S., & Linde, G. A. (2015). Fungicidal effect of Lippia alba essential oil on a white-rot fungus. Maderas. Ciencia y tecnología, 17(1), 29-38.
dc.relationGilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of applied microbiology, 116(5), 1149-1163.
dc.relationGómez, L. A., Stashenko, E., & Ocazionez, R. E. (2013). Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus. Natural product communications, 8(2), 249-252.
dc.relationGorla, D., & Noireau, F. (2010). Geographic distribution of Triatominae vectors in America. American trypanosomiasis (Chagas disease). One hundred years of research. 1st edition. Burlington (VA): Elsevier Inc, 209-31.
dc.relationRiarte, A., Luna, C., Sabatiello, R., Sinagra, A., Schiavelli, R., De Rissio, A., & Lauricella, M. (1999). Chagas' disease in patients with kidney transplants: 7 years of experience, 1989–1996. Clinical infectious diseases, 29(3), 561-567.
dc.relationGraebin, CS, Madeira, MDF, Yokoyama-Yasunaka, JK, Miguel, DC, Uliana, SR, Benítez, D., y Eifler-Lima, VL (2010). Síntesis y actividad in vitro de los derivados de limoneno contra Leishmania y Trypanosoma. Revista Europea de la química medicinal, 45(4), 1524-1528.
dc.relationGrasl-Kraupp, B., Ruttkay-Nedecky, B., Koudelka, H., Bukowska, K., Bursch, W., & Schulte-Hermann, R. (1995). In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology, 21(5), 1465-1468.
dc.relationGrecco, S. S., Reimão, J. Q., Tempone, A. G., Sartorelli, P., Romoff, P., Ferreira, M. J., & Lago, J. H. (2010). Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC (Asteraceae). Parásitology research, 106(5), 1245-1248.
dc.relationGuhl, F. (2007). Chagas disease in Andean countries. Memórias do Instituto Oswaldo Cruz, 102, 29-38.
dc.relationGurtler, R. E., Segura, E. L., & Cohen, J. E. (2003). Congenital transmission of Trypanosoma cruzi infection in Argentina. Emerging infectious diseases, 9(1), 29-32.
dc.relationJafri, H., Husain, F. M., & Ahmad, I. (2014). Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of Staphylococcus aureus. Journal of Biomedical and Therapeutic Sciences, 1(1), 65-71.
dc.relationJercic, M. I., Mercado, R., & Villarroel, R. (2010). Congenital Trypanosoma cruzi infection in neonates and infants from two regions of Chile where Chagas' disease is endemic. Journal of clinical microbiology, 48(10), 3824-3826.
dc.relationJi, J., Zhang, L., Wu, Y. Y., Zhu, X. Y., Lv, S. Q., & Sun, X. Z. (2006). Induction of apoptosis by d-limonene is mediated by a caspase-dependent mitochondrial death pathway in human leukemia cells. Leukemia & lymphoma, 47(12), 2617-2624.
dc.relationJia, S. S., Xi, G. P., Zhang, M., Chen, Y. B., Lei, B., Dong, X. S., & Yang, Y. M. (2013). Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncology reports, 29(1), 349-354.
dc.relationJimenez, V., Paredes, R., Sosa, M. A., & Galanti, N. (2008). Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. Journal of cellular biochemistry, 105(3), 688-698.
dc.relationRueda, K., Trujillo, J. E., Carranza, J. C., & Vallejo, G. A. (2014). Transmisión oral de Trypanosoma cruzi: una nueva situación epidemiológica de la enfermedad de Chagas en Colombia y otros países suramericanos. Biomédica, 34(4), 631-41.
dc.relationKapoor, S. (2013). D-Limonene: An emerging antineoplastic agent. Human and Experimental Toxicology, 32(11), 1228.
dc.relationAzeredo, C. M., & Soares, M. J. (2013). Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Revista Brasileira de Farmacognosia, 23(5), 762-768.
dc.relationKapur, A., Felder, M., Fass, L., Kaur, J., Czarnecki, A., Rathi, K., & Patankar, M. (2016). The monoterpene, citral, increases intracellular oxygen radicals and inhibits cancer cell proliferation by inducing apoptosis and endoplasmic reticulum stress. Clinical cancer research, 615(22) 19106-4404.
dc.relationKatsukawa, M., Nakata, R., Takizawa, Y., Hori, K., Takahashi, S., & Inoue, H. (2010). Citral, a component of lemongrass oil, activates PPARα and γ and suppresses COX-2 expression. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(11), 1214-1220.
dc.relationKeenan, M., & Chaplin, J. H. (2015). Chapter Four-A New Era for Chagas Disease Drug Discovery?. Progress in medicinal chemistry, 54, 185-230.
dc.relationKessler, R. L., Contreras, V. T., Marliére, N. P., Guarneri, A. A., Villamizar Silva, L. H., Mazzarotto, G. A. C. A., Batista, M., Soccol, V. T., Krieger, M. A., & Probst, C. M. (2017). Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Molecular Microbiology.
dc.relationKöberle, F. (1970). The causation and importance of nervous lesions in American trypanosomiasis. Bulletin of the World Health Organization, 42(5), 739.
dc.relationKong, D. X., Li, X. J., & Zhang, H. Y. (2008). Convergent evolution of medicines. ChemMedChem, 3(8), 1169-1171.
dc.relationKpoviessi, S., Bero, J., Agbani, P., Gbaguidi, F., Kpadonou-Kpoviessi, B., Sinsin, B., & Quetin-Leclercq, J. (2014). Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. Journal of ethnopharmacology, 151(1), 652-659.
dc.relationKransdorf, E. P., Zakowski, P. C., & Kobashigawa, J. A. (2014). Chagas disease in solid organ and heart transplantation. Current opinion in infectious diseases, 27(5), 418-424.
dc.relationBenziger, C. P., do Carmo, G. A. L., & Ribeiro, A. L. P. (2017). Chagas Cardiomyopathy: Clinical Presentation and Management in the Americas. Cardiology Clinics, 35(1), 31-47.
dc.relationKransdorf, E. P., Zakowski, P. C., & Kobashigawa, J. A. (2014). Chagas disease in solid organ and heart transplantation. Current opinion in infectious diseases, 27(5), 418-424.
dc.relationKu, C. M., & Lin, J. Y. (2013). Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food chemistry, 141(2), 1104-1113.
dc.relationBahia, M. T., de Andrade, I. M., Martins, T. A. F., do Nascimento, Á. F. D. S., de Figueiredo Diniz, L., Caldas, I. S., & Ribeiro, I. (2012). Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis, 6(11), e1870.
dc.relationLeal, S. M., Pino, N., Stashenko, E. E., Martínez, J. R., & Escobar, P. (2013). Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. Journal of Essential Oil Research, 25(6), 512-519.
dc.relationLecane, P. S., Karaman, M. W., Sirisawad, M., Naumovski, L., Miller, R. A., Hacia, J. G., & Magda, D. (2005). Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer research, 65(24), 11676-11688.
dc.relationLee, B. Y., Bacon, K. M., Bottazzi, M. E., & Hotez, P. J. (2013). Global economic burden of Chagas disease: a computational simulation model. The Lancet infectious diseases, 13(4), 342-348.
dc.relationLee, H. J., Jeong, H. S., Kim, D. J., Noh, Y. H., Yuk, D. Y., & Hong, J. T. (2008). Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264. 7 cells. Archives of pharmacal research, 31(3), 342-349.
dc.relationLiao, P. C., Yang, T. S., Chou, J. C., Chen, J., Lee, S. C., Kuo, Y. H., Ho, L. C & Chao, L. K. P. (2015). Anti-inflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. Journal of Functional Foods, 19, 248-258.
dc.relationLópez, M. A., Stashenko, E. E., & Fuentes, J. L. (2011). Chemical composition and antigenotoxic properties of Lippia alba essential oils. Genetics and molecular biology, 34(3), 479-488.
dc.relationLuna-Marín, K. P., Jaramillo-Londoño, C. L., Hernández-Torres, J., Gutiérrez-Marín, R., Vallejo, G. A., & Angulo-Silva, V. M. (2009). ITS–RFLP-and RAPD-based genetic variability of Trypanosoma cruzi I, human and vector strains in Santander (Colombia). Parásitology research, 105(2), 519.
dc.relationGuzmán, S., Cardozo, R., & García, V. (2004). Desarrollo agrotecnológico de Lippia alba (Miller) NE Br ex Britton y Wilson. Guillermo de Ockhman, 7, 201-215.
dc.relationMamun-Or-Rashid, A. N. M., Sem, M. K., Jamal, M. A. H. M., & Nasrin, S. (2013). A comprehensive ethno-pharmacological review on Lippia alba M. International Journal of Biomedical Materials Research, 1(1), 14-20.
dc.relationMandal, G., Orta, J. F., Sharma, M., & Mukhopadhyay, R. (2013). Trypanosomatid aquaporins: roles in physiology and drug response. Diseases, 2(1), 3-23.
dc.relationManrique-Abril, F., Ospina, J. M., Herrera, G., Florez, A. C., Pavia, P. X., Montilla, M & Bula, C. P. (2013). Diagnóstico de enfermedad de Chagas en mujeres embarazadas y recién nacidos de Moniquirá y Miraflores, Boyacá, Colombia. Infectio, 17(1), 28-34.
dc.relationBai, J., Zheng, Y., Wang, G., & Liu, P. (2015). Protective effect of D-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxidative medicine and cellular longevity, 2016.
dc.relationMantilla, J. C., Suárez, E. U., & Barraza, M. F. (2011). Enfermedad de Chagas: correlación clínico-patológica. Serie de casos del Hospital Universitario de Santander-Departamento de Patología, Universidad Industrial de Santander. Revista Colombiana de Cardiología, 18(5), 249-261.
dc.relationManuele, M. G., Barreiro Arcos, M. L., Davicino, R., Ferraro, G., Cremaschi, G., & Anesini, C. (2009). Limonene exerts antiproliferative effects and increases nitric oxide levels on a lymphoma cell line by dual mechanism of the ERK pathway: relationship with oxidative stress. Cancer investigation, 28(2), 135-145.
dc.relationMartínez-Díaz, R. A., Ibáñez-Escribano, A., Burillo, J., Heras, L. de las, del Prado, G., Agulló-Ortuño, M. T., González-Coloma, A. (2015). Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthiumLinnaeus (Asteraceae) essential oil. Memórias Do Instituto Oswaldo Cruz, 110(5), 693–699.
dc.relationMartínez-Parra, A. G., Pinilla-Alfonso, M. Y., & Estrada-Montoya, J. H. (2015). Enfermedad de Chagas: de las tendencias epidemiológicas rurales a su urbanización en países desarrollados. Revisión de la literatura. Acta Odontológica Colombiana, 5(2), 85.
dc.relationMaya, J. D., Cassels, B. K., Iturriaga-Vásquez, P., Ferreira, J., Faúndez, M., Galanti, N., & Morello, A. (2007). Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4), 601-620.
dc.relationMaya, J. D., Rodriguez, A., Pino, L., Pabon, A., Ferreira, J., Pavani, M., & Morello, A. (2004). Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi. Biological research, 37(1), 61-69.
dc.relationSaddiq, A. A., & Khayyat, S. A. (2010). Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology, 98(1), 89-93.
dc.relationMecca, M. M. D., Bartel, L. C., Castro, C. R. D., & Castro, J. A. (2008). Benznidazole biotransformation in rat heart microsomal fraction without observable ultrastructural alterations: comparison to Nifurtimox-induced cardiac effects. Memorias do Instituto Oswaldo Cruz, 103(6), 549-553.
dc.relationMecca, M. M., Fanelli, S. L., Bartel, L. C., de Castro, C. R., Díaz, E. G., & Castro, J. A. (2007). Nifurtimox nitroreductase activity in different cellular fractions from male rat pancreas. Biochemical and ultrastructural alterations. Life sciences, 81(2), 144-152.
dc.relationMenna-Barreto, R. F., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S., & de Castro, S. L. (2009). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron, 40(2), 157-168
dc.relationMesa-Arango, A. C., Montiel-Ramos, J., Zapata, B., Durán, C., Betancur-Galvis, L., & Stashenko, E. (2009). Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.) NE Brown: composition, cytotoxicity and antifungal activity. Memórias do Instituto Oswaldo Cruz, 104(6), 878-884.
dc.relationBakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and chemical toxicology, 46(2), 446-475.
dc.relationMiller, J. A., Lang, J. E., Ley, M., Nagle, R., Hsu, C. H., Thompson, P. A., & Chow, H. S. (2013). Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer. Cancer Prevention Research, 6(6), 577-584.
dc.relationMinneman, R. M., Hennink, M. M., Nicholls, A., Salek, S. S., Palomeque, F. S., Khawja, A., Albor, L.C., Pennock, C.C., & Leon, J. S. (2012). Barriers to testing and treatment for Chagas disease among Latino immigrants in Georgia. Journal of parásitology research, 2012.
dc.relationMolina, I., Gómez i Prat, J., Salvador, F., Treviño, B., Sulleiro, E., Serre, N., & Blanco-Grau, A. (2014). Randomized trial of posaconazole and benznidazole for chronic Chagas' disease. New England Journal of Medicine, 370(20), 1899-1908.
dc.relationMorens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and re-emerging infectious diseases. Nature, 430(6996), 242-249.
dc.relationMoretti, N. S., da Silva Augusto, L., Clemente, T. M., Antunes, R. P. P., Yoshida, N., Torrecilhas, A. C., & Schenkman, S. (2015). Characterization of Trypanosoma cruzi sirtuins as possible drug targets for Chagas disease. Antimicrobial agents and chemotherapy, 59(8), 4669-4679.
dc.relationSanabria Calvo, M. (2016). Tripanosomiasis Americana o Enfermedad de Chagas. Revista Médica de Costa Rica y Centroamérica, 72(616), 539-544.
dc.relationMorillo, C. A., Marin-Neto, J. A., Avezum, A., Sosa-Estani, S., Rassi Jr, A., Rosas, F., & Guhl, F (2015). Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. New England Journal of Medicine, 373(14), 1295-1306.
dc.relationMurbach Teles Andrade, B. F., Nunes Barbosa, L., da Silva Probst, I., & Fernandes Júnior, A. (2014). Antimicrobial activity of essential oils. Journal of Essential Oil Research, 26(1), 34-40.
dc.relationMurcia, L., Carrilero, B., Munoz-Davila, M. J., Thomas, M. C., López, M. C., & Segovia, M. (2013). Risk factors and primary prevention of congenital Chagas disease in a nonendemic country. Clinical Infectious Diseases, 56(4), 496-502.
dc.relationMurray, C. J., Barber, R. M., Foreman, K. J., Ozgoren, A. A., Abd-Allah, F., Abera, S. F., & Abu-Rmeileh, N. M. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. The Lancet, 386(10009), 2145-2191.
dc.relationNagajyothi, F., Machado, F. S., Burleigh, B. A., Jelicks, L. A., Scherer, P. E., Mukherjee, S., Lisanti, M. P., Weiss, L. M., Garg, N. J., & Tanowitz, H. B. (2012). Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cellular microbiology, 14(5), 634¬643.
dc.relationBaldissera, M. D., de Freitas Souza, C., Mourão, R. H. V., da Silva, L. V. F., & Monteiro, S. G. (2015). Trypanocidal action of Lippia alba and Lippia origanoides essential oils against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Journal of Parasitic Diseases, 1-7.
dc.relationNibret, E., & Wink, M. (2010). Volatile components of four Ethiopian Artemisia species extracts and their in vitro antitrypanosomal and cytotoxic activities. Phytomedicine, 17(5), 369-374.
dc.relationNoireau, F. (2009). Wild Triatoma infestans, a potential threat that needs to be monitored. Memórias do Instituto Oswaldo Cruz, 104, 60-64.
dc.relationNuñez, M. B., Torres, C. A., Aguado, M. I., Bela, A. J., Dudik, H. N., & Bregni, C. (2012). Polyphenols and antimicrobial activity in extracts of Lippia alba (Mill.). International Journal of Medicinal and Aromatic Plants, 2(3), 361-368.
dc.relationOkpekon, T., Yolou, S., Gleye, C., Roblot, F., Loiseau, P., Bories, C., & Hocquemiller, R. (2004). Antiparasitic activities of medicinal plants used in Ivory Coast. Journal of ethnopharmacology, 90(1), 91-97.
dc.relationSantoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Freire, J. M., & Soares, M. J. (2007a). Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parásitology, 134(11), 1649-1656.
dc.relationOliveira, D. R., Leitao, G. G., Santos, S. S., Bizzo, H. R., Lopes, D., Alviano, C. S., & Leitao, S. G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
dc.relationOliveira, G. B. F., Avezum, Á., & Mattos, A. J. C. (2015). Perspectives in Chagas disease treatment. Global Heart, 10, 189-192.
dc.relationOliveira, I., Torrico, F., Muñoz, J., & Gascon, J. (2010). Congenital transmission of Chagas disease: a clinical approach. Expert review of anti-infective therapy, 8(8), 945-956.
dc.relationOlivero-Verbel, J., Barreto-Maya, A., Bertel-Sevilla, A., & Stashenko, E. E. (2014). Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba. Brazilian Journal of Microbiology, 45(3), 759-767.
dc.relationOrganización Mundial de la Salud. (2006). Estimación cuantitativa de la enfermedad de Chagas en las Americas.
dc.relationOrganización Mundial de la Salud. (2015). Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third WHO Report on Neglected Tropical Diseases
dc.relationBarbas, L. A. L., Maltez, L. C., Stringhetta, G. R., de Oliveira Garcia, L., Monserrat, J. M., da Silva, D. T., Heinzmann, B. M., & Sampaio, L. A. (2017). Properties of two plant extractives as anaesthetics and antioxidants for juvenile tambaqui Colossoma macropomum. Aquaculture, 469, 79-87.
dc.relationOrganización Mundial de la Salud. (2015). Chagas disease in Latin America: an epidemiological update based on 2010 estimates.
dc.relationPalacio, K. A., & Rodríguez, N. (2008). Plasticidad fenotípica en Lippia alba (Verbenaceae) en respuesta a la disponibilidad hídrica en dos ambientes lumínicos. Acta Biológica Colombiana, 13(1), 187.
dc.relationPark, K. R., Nam, D., Yun, H. M., Lee, S. G., Jang, H. J., Sethi, G., & Ahn, K. S. (2011). β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer letters, 312(2), 178-188.
dc.relationSantoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Freire, J. M., & Soares, M. J. (2007a). Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parásitology, 134(11), 1649-1656.
dc.relationParra-Garcés, M. I., Caroprese-Araque, J. F., Arrieta-Prieto, D., & Stashenko, E. (2010). Morphology, anatomy, ontogeny and chemical composition of inflorescences volatile secondary metabolites of Lippia alba (Verbenaceae) at three stages of development. Revista de biologia tropical, 58(4), 1533-1548.
dc.relationPaulino, M., Iribarne, F., Dubin, M., Aguilera-Morales, S., Tapia, O., & Stoppani, A. O. M. (2005). The chemotherapy of Chagas' disease: an overview. Mini reviews in medicinal chemistry, 5(5), 499-519.
dc.relationPendergrass, W., Wolf, N., & Poot, M. (2004). Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry Part A, 61(2), 162-169.
dc.relationPérez-Galán, P., Roué, G., Villamor, N., Montserrat, E., Campo, E., & Colomer, D. (2006). The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood, 107(1), 257-264.
dc.relationPinazo, M. J., Guerrero, L., Posada, E., Rodríguez, E., Soy, D., & Gascon, J. (2013). Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrobial agents and chemotherapy, 57(1), 390-395.
dc.relationPinto, E. D. P. P., Amorozo, M. C. D. M., & Furlan, A. (2006). Conhecimento popular sobre plantas medicinais em comunidades rurais de mata atlântica–Itacaré, BA, Brasil. Acta Botanica Brasilica, 20(4), 751-762.
dc.relationPolanco-Hernández, G., Escalante-Erosa, F., García-Sosa, K., Rosado, M. E., Guzmán-Marín, E., Acosta-Viana, K. Y., & Peña-Rodríguez, L. M. (2013). Synergistic effect of lupenone and caryophyllene oxide against Trypanosoma cruzi. Evidence-Based Complementary and Alternative Medicine, 2013.
dc.relationBarros, L. M., Duarte, A. E., Morais-Braga, M. F. B., Waczuk, E. P., Vega, C., Leite, N. F., & Kamdem, J. P. (2016). Chemical characterization and trypanocidal, leishmanicidal and cytotoxicity potential of Lantana camara L. (Verbenaceae) essential oil. Molecules, 21(2), 209.
dc.relationPost-White, J., & Nichols, W. (2007). Randomized trial testing QueaseEase TM essential oil for motion sickness. Int J Essent Oil Ther, 1(4), 158-166.
dc.relationSantoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Mendonça, L. Z., & Soares, M. J. (2007c). Trypanosoma cruzi: activity of essential oils from Achillea millefolium L., Syzygium aromaticum L. and Ocimum basilicum L. on epimastigotes and trypomastigotes. Experimental parásitology, 116(3), 283-290.
dc.relationSantos, K. K., Matias, E. F., Tintino, S. R., Souza, C. E., Braga, M. F., Guedes, G. M., Rolón, M., Vega, C., de Arias, A. R., Costa, J. G., & Menezes, I. R. (2012). Anti-Trypanosoma cruzi and cytotoxic activities of Eugenia uniflora L. Experimental Parásitology, 131(1), 130-132.
dc.relationSantos, N. N., Menezes, L. R., Dos Santos, J. A., Meira, C. S., Guimarhes, E. T., Soares, M. B., & Costa, E. V. (2014). A new source of (R)-limonene and rotundifolone from leaves of Lippia pedunculosa (verbenaceae) and their trypanocidal properties. Natural product communications, 9(6), 737-739.
dc.relationSantos, NN, Menezes, LR, Dos Santos, JA, Meira, CS, Guimarhes, ET, Soares, MB, y Costa, EV (2014). Una nueva fuente de limoneno (R) y rotundifolone partir de hojas de Lippia pedunculosa (Verbenaceae) y sus propiedades tripanocidas. Comunicaciones de productos Natural , 9 (6), 737-739.
dc.relationSchelz, Z., Hohmann, J., & Molnar, J. (2010). Recent advances in research of antimicrobial effects of essential oils and plant derived compounds on bacteria. Ethnomedicine: A Source of Complementary Therapeutics, 6, 179-201.
dc.relationSchijman, A. G. (2006). Congenital chagas disease. Perspectives in Medical Virology, 13, 223-258.
dc.relationHaldar, S., Kar, B., Dolai, N., Kumar, R. S., Behera, B., & Haldar, P. K. (2012). In vivo anti–nociceptive and anti–inflammatory activities of Lippia alba. Asian Pacific Journal of Tropical Disease, 2, S667-S670.
dc.relationBern, C. (2015). Chagas’ disease. New England Journal of Medicine, 373(5), 456-466.
dc.relationSchmidt, T. J., A Khalid, S., J Romanha, A., MA Alves, T., W Biavatti, M., Brun, R., Da Costa, F. B., de Castro, S.L., Ferreira, V. F., de Lacerda, M. V., Lago, J. H., León, L. L., Lopes, N. P., das Neves Amorin, R. C., Niehues, M., Ogungbe, I. V., Pohlit, A. M., Scotti, M. T., Setzer, W. N., de N.C.
dc.relationSoerio, M., Steindel, M., Tempone, A. G. (2012). The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Current medicinal chemistry, 19(14), 2176-2228.
dc.relationSchmunis, G. A. (2007). The globalization of Chagas disease. ISBT Science Series, 2(1), 6-11.
dc.relationSena Filho, J. G., Melo, J. G., Saraiva, A. M., Gonçalves, A. M., Psiottano, M. N. C., & Xavier, H. S. (2006). Antimicrobial activity and phytochemical profile from the roots of Lippia alba (Mill.) NE Brown. Revista Brasileira de Farmacognosia, 16(4), 506-509.
dc.relationShikanai-Yasuda, M. A., & Carvalho, N. B. (2012). Oral transmission of Chagas disease. Clinical Infectious Diseases, cir956.
dc.relationShikanai-Yasuda, M. A., & Carvalho, N. B. (2012). Oral transmission of Chagas disease. Clinical Infectious Diseases, cir956.
dc.relationShyamapada, M. (2014). Epidemiological Aspects of Chagas Disease-a Review. Journal of Ancient Diseases & Preventive Remedies.
dc.relationSilva-Neto, M. A., Fampa, P., Caiaffa, C. D., Carneiro, A. B., & Atella, G. C. (2010). Cell signaling during Trypanosoma cruzi development in triatominae. Open Parásitology Journal, 4, 188-194.
dc.relationSoeiro, M. N. C., & de Castro, S. L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert opinion on therapeutic targets, 13(1), 105-121.
dc.relationHall, B. S., & Wilkinson, S. R. (2012). Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrobial agents and chemotherapy, 56(1), 115-123.
dc.relationSoković, M., Glamočlija, J., Marin, P. D., Brkić, D., & van Griensven, L. J. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11), 7532-7546.
dc.relationBernacchi, A. S., Franke, D. C. B., & Castro, J. A. (2002). Trypanocidal action of 2, 4-dichloro-6-phenylphenoxyethyl diethylamine hydrobromide (Lilly 18947) on Trypanosoma cruzi. Acta Pharmacologica Sinica, 23(5), 399-404.
dc.relationSosa-Estani, S., & Segura, E. L. (2015). Integrated control of Chagas disease for its elimination as public health problem-A Review. Memórias do Instituto Oswaldo Cruz, 110(3), 289-298.
dc.relationStashenko, E. E. (2009). Aceites esenciales. Universidad Industrial de Santander.
dc.relationStashenko, E. E., Jaramillo, B. E., & Martı́nez, J. R. (2004). Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) NE Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. Journal of Chromatography A, 1025(1), 93-103.
dc.relationStashenko, E. E., Martínez, J. R., Durán, D. C., Córdoba, Y., & Caballero, D. (2014). Estudio comparativo de la composición química y la actividad antioxidante de los aceites esenciales de algunas plantas del género Lippia (Verbenaceae) cultivadas en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38, 89-105.
dc.relationSteindel, M., Pacheco, L. K., Scholl, D., Soares, M., de Moraes, M. H., Eger, I., & de Carvalho-Pinto, C. J. (2008). Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarina State, Brazil. Diagnostic microbiology and infectious disease, 60(1), 25-32.
dc.relationSülsen, V. P., Frank, F. M., Cazorla, S. I., Anesini, C. A., Malchiodi, E. L., Freixa, B., & Martino, V. S. (2008). Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrobial Agents and Chemotherapy, 52(7), 2415-2419.
dc.relationSun, J. (2007). D-Limonene: safety and clinical applications. Alternative Medicine Review, 12(3), 259.
dc.relationSzatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer research, 51(3), 794-798.
dc.relationHennebelle, T., Sahpaz, S., Dermont, C., Joseph, H., & Bailleul, F. (2006). The essential oil of Lippia alba: analysis of samples from French overseas departments and review of previous works. Chemistry & biodiversity, 3(10), 1116-1125.
dc.relationTeixeira, A. R., Hecht, M. M., Guimaro, M. C., Sousa, A. O., & Nitz, N. (2011). Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clinical microbiology reviews, 24(3), 592-630.
dc.relationTeixeira, A. R., Nascimento, R. J., & Sturm, N. R. (2006). Evolution and pathology in Chagas disease: a review. Memórias do Instituto Oswaldo Cruz, 101(5), 463-491.
dc.relationBlanco, S. B., Segura, E. L., Cura, E. N., Chuit, R., Tulián, L., Flores, I., ... & Gürtler, R. E. (2000). Congenital transmission of Trypanosoma cruzi: an operational outline for detecting and treating infected infants in north western Argentina. Tropical Medicine & International Health, 5(4), 293-301.
dc.relationTeixeira, D. E., Benchimol, M., Crepaldi, P. H., & de Souza, W. (2012). Interactive multimedia to teach the life cycle of Trypanosoma cruzi, the causative agent of Chagas disease. PLoS Negl Trop Dis, 6(8), e1749.
dc.relationTeles, S., Pereira, J. A., Santos, C. H., Menezes, R. V., Malheiro, R., Lucchese, A. M., & Silva, F. (2012). Geographical origin and drying methodology may affect the essential oil of Lippia alba (Mill) NE Brown. Industrial Crops and Products, 37(1), 247-252.
dc.relationThomas, M. L., Coyle, K. M., Cruickshank, B., Giacomantonio, M., Wallace, M., Giacomantonio, C., & Marcato, P. (2016). Abstract B23: Citral reduces ALDH1A3 activity in breast cancer: Potential applications in targeting breast cancer stem cells. Molecular Cancer Research, 14(2 Supplement), B23.
dc.relationTodorov, A. G., Andrade, D., Pesquero, J. B., Araujo, R. D. C., Bader, M., Stewart, J., & Neto, H. C. F. (2003). Trypanosoma cruzi induces edematogenic responses in mice and invades cardiomyocytes and endothelial cells in vitro by activating distinct kinin receptor (B1/B2) subtypes. The FASEB Journal, 17(1), 73-75.
dc.relationTomazoni, E. Z., Pansera, M. R., Pauletti, G. F., Moura, S., Ribeiro, R. T., & Schwambach, J. (2016). In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates. Anais da Academia Brasileira de Ciências, (AHEAD), 0-0.
dc.relationTorres, C. M. (1960). Myocytolysis and fibrosis of the myocardium in Chagas' disease. Memórias do Instituto Oswaldo Cruz, 58, 161.
dc.relationTorrico, F., Alonso-Vega, C., Suarez, E., Rodriguez, P., Torrico, M. C., Dramaix, M., Truyens, C., & Carlier, Y. (2004b). Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. The American journal of tropical medicine and hygiene, 70(2), 201-209.
dc.relationHennebelle, T., Sahpaz, S., Joseph, H., & Bailleul, F. (2008). Ethnopharmacology of Lippia alba. Journal of ethnopharmacology, 116(2), 211-222.
dc.relationTorrico, F., Castro, M., Solano, M., Rodriguez, P., Torrico, M. C., Truyens, C., & Carlier, Y. (2004a). Effects of maternal infection with Trypanosoma cruzi in pregnancy development and in the newborn infant. Revista da Sociedade Brasileira de Medicina Tropical, 38, 73-76.
dc.relationTorrico, M. C., Solano, M., Guzmán, J. M., Parrado, R., Suarez, E., Alonzo-Vega, C., & Torrico, F. (2004c). Estimation of the parasitemia in Trypanosoma cruzi human infection: high parasitemias are associated with severe and fatal congenital Chagas disease. Revista da Sociedade Brasileira de Medicina Tropical, 38, 58-61.
dc.relationToscano Gonzalez, J. (2006). Uso tradicional de plantas medicinales en la vereda San Isidro, municipio de San José de Pare-Boyacá: un estudio preliminar usando técnicas cuantitativas. Acta biol. colomb, 11(2), 137-1146.
dc.relationBonney, K. M., & Engman, D. M. (2015). Autoimmune pathogenesis of Chagas heart disease: looking back, looking ahead. The American journal of pathology, 185(6), 1537-1547.
dc.relationTrachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P.J., Achanta, G., Arlinghaus, R.B., Liu, J., y Huang, P. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer cell, 10(3), 241-252.
dc.relationTrochine, A., Creek, D. J., Faral-Tello, P., Barrett, M. P., & Robello, C. (2014). Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis, 8(5), e2844.
dc.relationUrbina, J. A. (2009). Ergosterol biosynthesis and drug development for Chagas disease. Memorias do Instituto Oswaldo Cruz, 104, 311-318.
dc.relationUrbina, J. A. (2010). Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta tropica, 115(1), 55-68.
dc.relationUrbina, J. A. (2015). Recent clinical trials for the etiological treatment of chronic Chagas disease: advances, challenges and perspectives. Journal of Eukaryotic Microbiology, 62(1), 149-156.
dc.relationVan Der Logt, E. M., Roelofs, H. M., Van Lieshout, E. M., Nagengast, F. M., & Peters, W. H. (2004). Effects of dietary anticarcinogens and nonsteroidal anti-inflammatory drugs on rat gastrointestinal UDP-glucuronosyltransferases. Anticancer research, 24(2B), 843-850.
dc.relationHerrera, L. (2010). Una revisión sobre reservorios de Trypanosoma (Schizotrypanum) cruzi (Chagas, 1909), agente etiológico de la Enfermedad de Chagas. Bol Mal Salud Amb, 50(1), 3-15.
dc.relationVarela, M. T., Dias, R. Z., Martins, L. F., Ferreira, D. D., Tempone, A. G., Ueno, A. K., & Fernandes, J. P. S. (2016). Gibbilimbol analogues as antiparasitic agents—Synthesis and biological activity against Trypanosoma cruzi and Leishmania (L.) infantum. Bioorganic & medicinal chemistry letters, 26(4), 1180-1183.
dc.relationVenturi, C. R., Danielli, L. J., Klein, F., Apel, M. A., Montanha, J. A., Bordignon, S. A., Roehe, P. M., Fuentefria, A. M., & Henriques, A. T. (2015). Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia. Pharmaceutical biology, 53(5), 682-688.
dc.relationVera, S. S., Zambrano, D. F., Méndez-Sanchez, S. C., Rodríguez-Sanabria, F., Stashenko, E. E., & Luna, J. E. D. (2014). Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parásitology research, 113(7), 2647-2654.
dc.relationVianna, G. O. (1911). On pathologic anatomy in Chagas disease. Mem. Inst. Oswaldo Cruz, 3, 276-294.
dc.relationBorges, A. R., de Albuquerque Aires, J. R., Higino, T. M. M., de Medeiros, M. D. G. F., Citó, A. M. D. G. L., Lopes, J. A. D., & de Figueiredo, R. C. B. Q. (2012). Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil. Experimental parásitology, 132(2), 123-128.
dc.relationVigushin, D. M., Poon, G. K., Boddy, A., English, J., Halbert, G. W., Pagonis, C., & Coombes, R. C. (1998). Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer chemotherapy and pharmacology, 42(2), 111-117.
dc.relationViotti, R., Vigliano, C., Álvarez, M. G., Lococo, B., Petti, M., Bertocchi, G., & Laucella, S. (2011). Impact of aetiological treatment on conventional and multiplex serology in chronic Chagas disease. PLoS Negl Trop Dis, 5(9), e1314.
dc.relationViotti, R., Vigliano, C., Armenti, H., & Segura, E. (1994). Treatment of chronic Chagas' disease with benznidazole: clinical and serologic evolution of patients with long-term follow-up. American heart journal, 127(1), 151-162.
dc.relationVit, P., Silva, B., & Meléndez, P. (2002). Lippia alba NE Br. Ficha botánica de interés apícola en Venezuela, No. 2 Cidrón. Rev Fac Farm Universidad de Los Andes, Mérida, Venezuela, 43.
dc.relationWeiss, B., & Aksoy, S. (2011). Microbiome influences on insect host vector competence. Trends in parásitology, 27(11), 514-522.
dc.relationHoet, S., Pieters, L., Muccioli, G. G., Habib-Jiwan, J. L., Opperdoes, F. R., & Quetin-Leclercq, J. (2007). Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds. Journal of natural products, 70(8), 1360-1363.
dc.relationWen, J. J., Vyatkina, G., & Garg, N. (2004). Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radical Biology and Medicine, 37(11), 1821-1833.
dc.relationWilkinson, S. R., Obado, S. O., Mauricio, I. L., & Kelly, J. M. (2002). Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proceedings of the National Academy of Sciences, 99(21), 13453-13458.
dc.relationWilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M., & Cheeseman, I. (2008). A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences, 105(13), 5022-5027.
dc.relationWink, M. (2012). Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules, 17(11), 12771-12791.
dc.relationXia, H., Liang, W., Song, Q., Chen, X., Chen, X., & Hong, J. (2013). The in vitro study of apoptosis in NB4 cell induced by citral. Cytotechnology, 65(1), 49-57.
dc.relationBustamante, J. M., & Tarleton, R. L. (2014). Potential new clinical therapies for Chagas disease. Expert review of clinical pharmacology, 7(3), 317-325.
dc.relationXiu-zhen, W. L. Z. (2009). Growth inhibition effects of D-limonene on Human Gastric Carcinoma MGC803 cells [J]. Life Science Instruments, 1, 012.
dc.relationYang, D., Michel, L., Chaumont, J. P., & Millet-Clerc, J. (2000). Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia, 148(2), 79-82.
dc.relationYeo, M., Acosta, N., Llewellyn, M., Sánchez, H., Adamson, S., Miles, G. A., & de Arias, A. R. (2005). Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. International journal for parásitology, 35(2), 225-233.
dc.relationYork, T., Van Vuuren, S. F., & De Wet, H. (2012). An antimicrobial evaluation of plants used for the treatment of respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, 144(1), 118-127.
dc.relationHossain, M. U., Oany, A. R., Ahmad, S. A. I., Hasan, M. A., Khan, M. A., & Siddikey, M. A. A. (2016). Identification of potential inhibitor and enzyme-inhibitor complex on trypanothione reductase to control Chagas disease. Computational Biology and Chemistry, 65, 29-36.
dc.relationYu, Z., Wang, W., Xu, L., Dong, J., & Jing, Y. (2008). d-Limonene and d-carvone induce apoptosis in HL-60 cells through activation of caspase-8. Asian J Trad Med, 3, 134-43.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2017
dc.titleCaracterización de la actividad tripanocida y citotóxica de aceites esenciales de lippia alba y sus terpenos bioactivos sobre trypanosoma cruzi
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución