dc.contributorMartínez Gutiérrez, Marlen
dc.creatorGómez Calderón, Cecilia
dc.date.accessioned2018-11-22T21:53:14Z
dc.date.available2018-11-22T21:53:14Z
dc.date.created2018-11-22T21:53:14Z
dc.date.issued2016-10-21
dc.identifierT 86.16 G652e
dc.identifierhttps://repositorio.udes.edu.co/handle/001/633
dc.description.abstractThe transmission of Dengue virus (DENV) and Chikungunya virus (CHIKV) has increased worldwide, due in part to the lack of a specific antiviral treatment. For this reason, the search for compounds with antiviral potential, either as licensed drugs or in natural products, is a research priority. The objective of this study was to identify some of the compounds that are present in Mammea americana (M. americana) and Tabernaemontana cymosa (T. cymosa) plants and, subsequently, to evaluate their cytotoxicity in VERO cells and their potential antiviral effects on DENV and CHIKV infections in those same cells. Dry ethanolic extracts of M. americana and T. cymosa seeds were subjected to open column chromatographic fractionation, leading to the identification of four compounds (with two coumarins, namely lupeol acetate, and voacangine). The cytotoxicity of each compound was subsequently assessed by the MTT method (at concentrations from 400 to 6.25 μg/mL). Pre- and post-treatment antiviral assays were performed at non-toxic concentrations; the resulting DENV inhibition was evaluated by Real-Time PCR, and the CHIKV inhibition was tested by the plating method. The results were analyzed by means of statistical analysis. The compounds showed low toxicity at concentrations ≤ 200 μg/mL. The compounds coumarin A and coumarin B, which are derived from the M. americana plant, significantly inhibited infection with both viruses during the implementation of the two experimental strategies employed here (posttreatment with inhibition percentages greater than 50%, p < 0.01; and pre-treatment with percentages of inhibition greater than 40%, p < 0.01). However, the lupeol acetate and voacangine compounds, which were derived from the T. cymosa plant, only significantly inhibited the DENV infection during the post-treatment strategy (at inhibition percentages greater than 70%, p < 0.01). In vitro, the coumarins are capable of inhibiting infection by DENV and CHIKV (with inhibition percentages above 50% in different experimental strategies), which could indicate that these two compounds are potential antivirals for treating Dengue and Chikungunya fever. Additionally, lupeol acetate and voacangine efficiently inhibit infection with DENV, also turning them into promising antivirals for Dengue fever.
dc.description.abstractLa transmisión del DENV y del CHIKV se ha incrementado mundialmente, debido en parte a la falta de un tratamiento antiviral específico. Por esta razón la búsqueda de compuestos con potencial antiviral es una prioridad de investigación. En el presente trabajo, se evaluó el efecto antiviral de cuatro compuestos extraídos de semillas de Mammea americana (Cumarina A y Cumarina B) y Tabernaemontana cymosa (Acetato de Lupeol y Voacangina) sobre la infección por DENV y CHIKV en células VERO. Se evaluó la citotoxicidad de cada compuesto por el método MTT (concentraciones desde 400 hasta 6.25μg/mL). Con concentraciones no tóxicas se realizaron los ensayos antivirales con dos estrategias experimentales (Pre y Post-Tratamiento) y se evaluó el potencial antiviral de cada una sobre la infección por CHIKV (método de plaqueo) o DENV (q-PCR). Los resultados fueron analizados por medio de análisis estadístico (ANOVA-DMS o t-Student). En el análisis los compuestos mostraron baja toxicidad en concentraciones ≤200μg/mL. Los compuestos Cumarina A y Cumarina B, inhibieron de manera significativa la infección por ambos virus en las dos estrategias experimentales empleadas (Post-Tratamiento con porcentajes de inhibición (PI) mayores al 50%, p<0.01; y Pre-Tratamiento con PI mayores al 40%, p<0.01). Por otro lado, las compuestos Acetato de Lupeol y Voacangina, solo inhibieron de manera significativa la infección por DENV en la estrategia post-tratamiento con PI mayores al 70%, p<0.01. Se concluye que in vitro, las Cumarinas son capaces de inhibir la infección del DENV y el CHIKV (con porcentajes de inhibición superiores al 50% en diferentes estrategias experimentales) lo que podría convertir a estos dos compuestos, en potenciales antivirales para el tratamiento del Dengue y el Chikungunya. Adicionalmente el Acetato de Lupeol y la Voacangina inhiben eficientemente la infección DENV, convirtiéndolos también en promisorios antivirales para el Dengue.
dc.languagespa
dc.publisherBucaramanga : Universidad de Santander, 2016
dc.publisherFacultad Ciencias de la Salud
dc.publisherMaestría en Investigación en enfermedades Infecciosas
dc.relationAbdelnabi, R., Neyts, J., & Delang, L. (2015). Towards antivirals against chikungunya virus. Antiviral research, 121, 59-68.
dc.relationAbreu, V. G., Correa, G. M., Silva, T. M., Fontoura, H. S., Cara, D. C., Piló-Veloso, D., & Alcântara, A. F. (2013). Anti-inflammatory effects in muscle injury by transdermal application of gel with Lychnophora pinaster aerial parts using phonophoresis in rats. BMC complementary and alternative medicine, 13(1), 1.
dc.relationAbubakar, I. B., & Loh, H. S. (2016). A review on ethnobotany, pharmacology and phytochemistry of Tabernaemontana corymbosa. Journal of Pharmacy and Pharmacology
dc.relationAcosta, E. G., Kumar, A., & Bartenschlager, R. (2014). Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv Virus Res, 88, 1-109.
dc.relationAchenbach, H., Benirschke, M., & Torrenegra, R. (1997). Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochemistry, 45(2), 325-335.
dc.relationAhmad, N., Fazal, H., Ayaz, M., Abbasi, B. H., Mohammad, I., & Fazal, L. (2011). Dengue fever treatment with Carica papaya leaves extracts. Asian Pacific journal of tropical biomedicine, 1(4), 330-333.
dc.relationAmarilla, A. A., de Almeida, F. T., Jorge, D. M., Alfonso, H. L., de Castro-Jorge, L. A., Nogueira, N. A., . . . Aquino, V. H. (2009). Genetic diversity of the E protein of dengue type 3 virus. Virology journal, 6(1), 1.
dc.relationArgay, G., Kalman, A., Kapor, A., Ribar, B., Petrović, S., & Gorunović, M. (1997). Crystal structure of a mixture of lupeol-acetate tautomers isolated from Hieracium plumulosum A. Kerner, Asteraceae. Journal of molecular structure, 435(2), 169-179.
dc.relationAshalatha, K., Venkateswarlu, Y., Priya, A. M., Lalitha, P., Krishnaveni, M., & Jayachandran, S. (2010). Anti inflammatory potential of Decalepis hamiltonii (Wight and Arn) as evidenced by down regulation of pro inflammatory cytokines—TNF-α and IL-2. Journal of ethnopharmacology, 130(1), 167-170.
dc.relationAury, C. R., Jennifer, O. P., Erika, R. C., & Pretell, M. (2013). APROXIMACIÓN AL ESTUDIO DEL DAÑO OXIDATIVO CAUSADO POR LARVICIDAS NATURALES Y TEMEFOS SOBRE PROTEOMAS DE LARVAS DEL MOSQUITO AEDES AEGYPTI.
dc.relationBhargava, P., & Aggarwal, N. (2016). Recent advances in development of Inhibitors of Dengue infection. Chemical Biology Letters, 2(2), 22-29.
dc.relationPizzolatti, M. G., Mendes, B. G., Cunha Jr, A., Soldi, C., Koga, A. H., Eger, I., . . . Steindel, M. (2008). Trypanocidal activity of coumarins and styryl-2-pyrones from Polygala sabulosa AW Bennett (Polygalaceae). Revista Brasileira de Farmacognosia, 18(2), 177-182.
dc.relationPohjala, L., Utt, A., Varjak, M., Lulla, A., Merits, A., Ahola, T., & Tammela, P. (2011). Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virusbased assays. PloS one, 6(12), e28923.
dc.relationPowers, A. M., Brault, A. C., Tesh, R. B., & Weaver, S. C. (2000). Re-emergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. Journal of General Virology, 81(2), 471-479.
dc.relationPowers, C., & Setzer, W. N. (2016). An In-Silico Investigation of Phytochemicals as Antiviral Agents against Dengue Fever. Combinatorial chemistry & high throughput screening.
dc.relationPresti, A. L., Lai, A., Cella, E., Zehender, G., & Ciccozzi, M. (2014). Chikungunya virus, epidemiology, clinics and phylogenesis: a review. Asian Pacific journal of tropical medicine, 7(12), 925-932.
dc.relationQadir, M. I., Abbas, K., Tahir, M., Irfan, M., Fiza, S., Bukhari, R., . . . Ali, M. (2015). Dengue fever: natural management. Pak. J. Pharm. Sci, 28(2), 647-655.
dc.relationQuintero-Gil, D. C., Ospina, M., Osorio-Benitez, J. E., & Martinez-Gutierrez, M. (2014). Differential replication of dengue virus serotypes 2 and 3 in coinfections of C6/36 cells and Aedes aegypti mosquitoes. The Journal of Infection in Developing Countries, 8(07), 876-884.
dc.relationRastogi, N., Abaul, J., Goh, K. S., Devallois, A., Philogène, E., & Bourgeois, P. (1998). Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunology & Medical Microbiology, 20(4), 267-273.
dc.relationRaviprakash, K., Sun, P., Raviv, Y., Luke, T., Martin, N., & Kochel, T. (2013). Dengue virus photoinactivated in presence of 1, 5-iodonaphthylazide (INA) or AMT, a psoralen compound (4′- aminomethyl-trioxsalen) is highly immunogenic in mice. Human vaccines & immunotherapeutics, 9(11), 2336-2341.
dc.relationRizo, W. F., Ferreira, L. E., Colnaghi, V., Martins, J. S., Franchi, L. P., Takahashi, C. S., . . . Fachin, A. L. (2013). Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A. DC in a human laryngeal epithelial carcinoma cell line (Hep-2). Genetics and molecular biology, 36(1), 105-110.
dc.relationBordi, L., Caglioti, C., Lalle, E., Castilletti, C., & Capobianchi, M. R. (2015). Chikungunya and Its Interaction With the Host Cell. Current Tropical Medicine Reports, 2(1), 22-29.
dc.relationRoberts, M. F. (2013). Alkaloids: biochemistry, ecology, and medicinal applications: Springer Science & Business Media.
dc.relationRodríguez, R. C., Carrasquilla, G., Porras, A., Galera-Gelvez, K., Yescas, J. G. L., & Rueda-Gallardo, J. A. (2016). The Burden of Dengue and the Financial Cost to Colombia, 2010–2012. The American journal of tropical medicine and hygiene, 94(5), 1065-1072.
dc.relationSan Martín, J. L., Brathwaite, O., Zambrano, B., Solórzano, J. O., Bouckenooghe, A., Dayan, G. H., & Guzmán, M. G. (2010). The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. The American journal of tropical medicine and hygiene, 82(1), 128-135.
dc.relationSantacoloma Varón, L., Chaves Córdoba, B., & Brochero, H. L. (2010). Susceptibility of Aedes aegypti to DDT, deltamethrin, and lambda-cyhalothrin in Colombia. Revista Panamericana de Salud Publica, 27(1), 66-73.
dc.relationScreaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 15(12), 745-759.
dc.relationSchaffner, F., & Mathis, A. (2014). Dengue and dengue vectors in the WHO European region: past, present, and scenarios for the future. The Lancet Infectious Diseases, 14(12), 1271-1280.
dc.relationSchinkovitz, A., Gibbons, S., Stavri, M., Cocksedge, M. J., & Bucar, F. (2003). Ostruthin: an antimycobacterial coumarin from the roots of Peucedanum ostruthium. Planta medica, 69(04), 369-371.
dc.relationSchmaljohn, A. L., & McClain, D. (1996). Alphaviruses (togaviridae) and flaviviruses (flaviviridae).
dc.relationSchmitz, J., Roehrig, J., Barrett, A., & Hombach, J. (2011). Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine, 29(42), 7276-7284.
dc.relationSchuffenecker, I., Iteman, I., Michault, A., Murri, S., Frangeul, L., Vaney, M.-C., . . . Pettinelli, F. (2006). Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med, 3(7), e263.
dc.relationBoshell, J., Groot, H., Gacharna, M., Márquez, G., González, M., Gaitán, M. O., . . . Martínez, M. (1986). Dengue en Colombia. Biomédica, 6(3-4), 101-106.
dc.relationSelisko, B., Guillemot, J.-C., Alvarez, K., & Canard, B. (2006). Opportunities in the development of ANTIdengue drugs: Geneva.
dc.relationSharma, A. K., Sharma, K. K., Sharma, T. C., Payal, P., Dobhal, M. P., & Sharma, M. C. A Review: Bioactive Phytochemicals as Basic Structural Templates for the Development of Newer Medicines for Better Living Health.
dc.relationShi, P.-Y. (2012). Molecular virology and control of flaviviruses: Horizon Scientific Press.
dc.relationShinde, P. B., & Laddha, K. S. (2015). Simultaneous quantification of furanocoumarins from Aegle marmelos fruit pulp extract. Journal of chromatographic science, 53(4), 576-579.
dc.relationSimões, L., Maciel, G., Brandão, G., Kroon, E., Castilho, R., & Oliveira, A. (2011). Antiviral activity of Distictella elongata (Vahl) Urb.(Bignoniaceae), a potentially useful source of anti‐dengue drugs from the state of Minas Gerais, Brazil. Letters in applied microbiology, 53(6), 602-607.
dc.relationSolignat, M., Gay, B., Higgs, S., Briant, L., & Devaux, C. (2009). Replication cycle of chikungunya: a reemerging arbovirus. Virology, 393(2), 183-197.
dc.relationSoriano-Garcia, M., Rodriguez, A., Walls, F., & Toscano, R. (1989). Crystal and molecular structure of voacangine: An alkaloid fromStemmadenia Donnell-Smithii. Journal of Crystallographic and Spectroscopic Research, 19(4), 725-732.
dc.relationStaples, J. E., Breiman, R. F., & Powers, A. M. (2009). Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clinical Infectious Diseases, 49(6), 942-948.
dc.relationStaples, J. E., & Fischer, M. (2014). Chikungunya virus in the Americas—what a vectorborne pathogen can do. New England Journal of Medicine, 371(10), 887-889.
dc.relationSuarez-Kurtz, G., & Botton, M. R. (2015). Pharmacogenetics of coumarin anticoagulants in Brazilians. Expert opinion on drug metabolism & toxicology, 11(1), 67-79.
dc.relationBourjot, M., Delang, L., Nguyen, V. H., Neyts, J., Guéritte, F. o., Leyssen, P., & Litaudon, M. (2012). Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of chikungunya virus replication. Journal of natural products, 75(12), 2183-2187.
dc.relationTang, L. I., Ling, A. P., Koh, R. Y., Chye, S. M., & Voon, K. G. (2012). Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC complementary and alternative medicine, 12(1), 1.
dc.relationTeixeira, R. R., Pereira, W. L., Oliveira, A. F. C. d. S., da Silva, A. M., de Oliveira, A. S., da Silva, M. L., . . . de Paula, S. O. (2014). Natural products as source of potential dengue antivirals. Molecules, 19(6), 8151-8176.
dc.relationThakur, A., Singla, R., & Jaitak, V. (2015). Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. European journal of medicinal chemistry, 101, 476-495.
dc.relationTsai, T.-T., Chuang, Y.-J., Lin, Y.-S., Wan, S.-W., Chen, C.-L., & Lin, C.-F. (2013). An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. Journal of biomedical science, 20(1), 1.
dc.relationTsetsarkin, K. A., Vanlandingham, D. L., McGee, C. E., &, & Higgs, S. (2007). A single mutation in chikungunya virus affects vector specificity and epidemic potential. . PLOS pathog, 3(12).
dc.relationUndurraga, E. A., Halasa, Y. A., & , & Shepard, D. S. (2013). Use of expansion factors to estimate the burden of dengue in Southeast Asia: a systematic analysis. PLoS Negl Trop Dis, 7(2).
dc.relationVarghese, F. S., Kaukinen, P., Gläsker, S., Bespalov, M., Hanski, L., Wennerberg, K., . . . Ahola, T. (2016). Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral research, 126, 117-124.
dc.relationVenugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed research international, 2013.
dc.relationVervaeke, P., Vermeire, K., & Liekens, S. (2015). Endothelial dysfunction in dengue virus pathology. Reviews in medical virology, 25(1), 50-67.
dc.relationVillar, L. A., Rojas, D. P., Besada-Lombana, S., & Sarti, E. (2015). Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS Negl Trop Dis, 9(3), e0003499.
dc.relationBourjot, M., Leyssen, P., Eydoux, C., Guillemot, J.-C., Canard, B., Rasoanaivo, P., . . . Litaudon, M. (2012). Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia, 83(6), 1076-1080.
dc.relationWal, A., Wal, P., Rai, A., & Kanwal, R. (2010). Isolation and modification of pseudohybrid plant (Lupeol). J Pharm Sci Res, 2, 13-25.
dc.relationWang, Q., & Xu, R. (2015). DenguePredict: An Integrated Drug Repositioning Approach towards Drug Discovery for Dengue. Paper presented at the AMIA Annual Symposium Proceedings.
dc.relationWang, W.-H., Chuang, H.-Y., Chen, C.-H., Chen, W.-K., & Hwang, J.-J. (2016). Lupeol acetate ameliorates collagen-induced arthritis and osteoclastogenesis of mice through improvement of microenvironment. Biomedicine & Pharmacotherapy, 79, 231-240.
dc.relationWang, W., Wang, S.-X., & Guan, H.-S. (2012). The antiviral activities and mechanisms of marine polysaccharides: an overview. Marine drugs, 10(12), 2795-2816.
dc.relationWeaver, S. C., & Forrester, N. L. (2015). Chikungunya: Evolutionary history and recent epidemic spread. Antiviral research, 120, 32-39.
dc.relationWeaver, S. C., & Lecuit, M. (2015). Chikungunya virus and the global spread of a mosquito-borne disease. New England Journal of Medicine, 372(13), 1231-1239.
dc.relationWeaver, S. C., & Reisen, W. K. (2010). Present and future arboviral threats. Antiviral research, 85(2), 328- 345.
dc.relationWebster, D. P., Farrar, J., & Rowland-Jones, S. (2009). Progress towards a dengue vaccine. The Lancet Infectious Diseases, 9(11), 678-687.
dc.relationWei, J., Chen, H., & An, J. (2014). Recent progress in dengue vaccine development. Virologica Sinica, 29(6), 353-363.
dc.relationWhitehorn, J., Nguyen, C. V. V., Khanh, L. P., Kien, D. T. H., Quyen, N. T. H., Tran, N. T. T., . . . Huong, N. T. C. (2015). Lovastatin for the treatment of adult patients with dengue: a randomised, doubleblind, placebo-controlled trial. Clinical Infectious Diseases, civ949.
dc.relationBrady, O. J., Golding, N., Pigott, D. M., Kraemer, M. U., Messina, J. P., Reiner Jr, R. C., . . . Hay, S. I. (2014). Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites & vectors, 7(1), 1.
dc.relationWhitehorn, J., Yacoub, S., Anders, K. L., Macareo, L. R., Cassetti, M. C., Van, V. C. N., . . . Simmons, C. P. (2014). Dengue therapeutics, chemoprophylaxis, and allied tools: state of the art and future directions. PLoS Negl Trop Dis, 8(8), e3025.
dc.relationWHO. (2012). Global strategy for dengue prevention and control 2012-2020.
dc.relationWilson, M. E., & Chen, L. H. (2015). Dengue: update on epidemiology. Current infectious disease reports, 17(1), 1-8.
dc.relationWilliams, K. L., Zompi, S., Beatty, P. R., & Harris, E. (2009). A mouse model for studying dengue virus pathogenesis and immune response. Ann N Y Acad Sci, 1171 Suppl 1, E12-23. doi: 10.1111/j.1749- 6632.2009.05057.x
dc.relationYu, D., Suzuki, M., Xie, L., Morris‐Natschke, S. L., & Lee, K. H. (2003). Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Medicinal research reviews, 23(3), 322-345.
dc.relationBubolsa, G. B., da Rocha Viannac, D., Medina-Remónd, A., von Poserb, G., Lamuela-Raventosd, R. M., Eifler-Limab, V. L., & Garciaa, S. C. (2013). The antioxidant activity of coumarins and flavonoids. Mini-Reviews in Medicinal Chemistry, 13, 000-000.
dc.relationBusch, M., & Erickson, G. (2015). An overview of Chikungunya virus. Journal of the American Academy of Physician Assistants, 28(10), 54-57.
dc.relationCosta, V. V., Fagundes, C. T., Souza, D. G., & Teixeira, M. M. (2013). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. The American journal of pathology, 182(6), 1950-1961.
dc.relationCoulerie, P., Maciuk, A., Lebouvier, N., Hnawia, E., Guillemot, J.-C., Canard, B., . . . Nour, M. (2013). Phytochemical study of Myrtopsis corymbosa, perspectives for anti-dengue natural compound research. Rec. Nat. Prod, 7(3), 250-253.
dc.relationChaturvedi, U. C., & Nagar, R. (2009). Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS Immunology & Medical Microbiology, 56(1), 9-24
dc.relationDalrymple, N., & Mackow, E. R. (2011). Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. Journal of virology, 85(18), 9478- 9485.
dc.relationDang, B. T., Gény, C., Blanchard, P., Rouger, C., Tonnerre, P., Charreau, B., . . . Pacaud, P. (2014). Advanced glycation inhibition and protection against endothelial dysfunction induced by coumarins and procyanidins from Mammea neurophylla. Fitoterapia, 96, 65-75.
dc.relationDang, B. T., Rouger, C., Litaudon, M., Richomme, P., Séraphin, D., & Derbré, S. (2015). Identification of Minor Benzoylated 4-Phenylcoumarins from a Mammea neurophylla Bark Extract. Molecules, 20(10), 17735-17746.
dc.relationDavis, B. D., Dulbecco, R., Eisen, H. N., & Ginsberg, H. S. (1990). Microbiology: Philadelphia: Lippincott.
dc.relationDeeba, F., Islam, A., Kazim, S. N., Naqvi, I. H., Broor, S., Ahmed, A., & Parveen, S. (2016). Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathogens and disease, 74(3), ftv119.
dc.relationDenizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of immunological methods, 89(2), 271-277.
dc.relationDiamond, M. S., & Pierson, T. C. (2015). Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell, 162(3), 488-492.
dc.relationDíaz-González, E. E., Kautz, T. F., Dorantes-Delgado, A., Malo-García, I. R., Laguna-Aguilar, M., Langsjoen, R. M., . . . Danis-Lozano, R. (2015). First report of Aedes aegypti transmission of chikungunya virus in the Americas. The American journal of tropical medicine and hygiene, 93(6), 1325-1329.
dc.relationDíaz Castillo, F., Morelos Cardona, S. M., Carrascal Medina, M., Pájaro González, Y., & Gómez Estrada, H. (2012). Actividad larvicida de extractos etanólicos de Tabernaemontana cymosa y Trichilia hirta sobre larvas de estadio III y IV de Aedes aegypti (Diptera: Culicidae). Revista Cubana de Plantas Medicinales, 17(3), 256-267.
dc.relationEdelman, R., Tacket, C., Wasserman, S., Bodison, S., Perry, J., & Mangiafico, J. (2000). Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. The American journal of tropical medicine and hygiene, 62(6), 681-685.
dc.relationEl-Kashef, D. F., Hamed, A. N., Khalil, H. E., & Kamel, M. S. (2015). Triterpenes and sterols of family Apocynaceae (2013-1955), A review. Journal of Pharmacognosy and Phytochemistry, 4(2).
dc.relationEsu, E., Lenhart, A., Smith, L., & Horstick, O. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Tropical Medicine & International Health, 15(5), 619-631.
dc.relationFan, J., Liu, Y., & Yuan, Z. (2014). Critical role of Dengue Virus NS1 protein in viral replication. Virologica Sinica, 29(3), 162-169.
dc.relationFarrar, J., Hotez, P., Junghanss, T., Kang, G., Lalloo, D., & White, N. J. (2013). Manson's tropical diseases: Elsevier Health Sciences.
dc.relationFerreira, M. E., de Arias, A. R., Yaluff, G., de Bilbao, N. V., Nakayama, H., Torres, S., . . . Fournet, A. (2010). Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine, 17(5), 375-378.
dc.relationFuruya-Kanamori, L., Liang, S., Milinovich, G., Magalhaes, R. J. S., Clements, A. C., Hu, W., . . . Yakob, L. (2016). Co-distribution and co-infection of chikungunya and dengue viruses. BMC infectious diseases, 16(1), 1.
dc.relationFylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., & Nicolaides, D. N. (2004). Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Current pharmaceutical design, 10(30), 3813-3833.
dc.relationGalán-Huerta, K. A., Rivas-Estilla, A. M., Fernández-Salas, I., Farfan-Ale, J. A., & Ramos-Jiménez, J. (2015). Chikungunya virus: A general overview. Medicina Universitaria, 17(68), 175-183. doi: 10.1016/j.rmu.2015.06.001
dc.relationGarazd, Y., Garazd, M., & Lesyk, R. (2016). Synthesis and evaluation of anticancer activity of 6- pyrazolinylcoumarin derivatives. Saudi Pharmaceutical Journal.
dc.relationGay, N., Rousset, D., Huc, P., Matheus, S., Ledrans, M., Rosine, J., . . . Noël, H. (2016). Seroprevalence of Asian Lineage Chikungunya Virus Infection on Saint Martin Island, 7 Months After the 2013 Emergence. The American journal of tropical medicine and hygiene, 94(2), 393-396.
dc.relationGomez-Verjan, J., Estrella-Parra, E., Gonzalez-Sanchez, I., Rivero-Segura, N., Vazquez-Martinez, R., Magos-Guerrero, G., . . . Reyes-Chilpa, R. (2015). Toxicogenomic analysis of pharmacological active coumarins isolated from Calophyllum brasiliense. Genomics data, 6, 258-259.
dc.relationGuey Chuen, P., Huan-Yao, L., Yee-Shin, L., & Kulkanya, C. (2011). Dengue vaccines: challenge and confrontation. World Journal of Vaccines, 2011.
dc.relationGupta, D. K., Kaur, P., Leong, S. T., Tan, L. T., Prinsep, M. R., & Chu, J. J. H. (2014). Anti-Chikungunya viral activities of aplysiatoxin-related compounds from the marine cyanobacterium Trichodesmium erythraeum. Marine drugs, 12(1), 115-127.
dc.relationHadinegoro, S. R., Arredondo-García, J. L., Capeding, M. R., Deseda, C., Chotpitayasunondh, T., Dietze, R., . . . Rivera-Medina, D. M. (2015). Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. New England Journal of Medicine, 373(13), 1195-1206.
dc.relationHarbach, R. E. (2007). The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa, 1668(1), 591-538.
dc.relationHernández-Castro, C., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2015). Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pacific Journal of Tropical Disease, 5(2), 98-106.
dc.relationHorwood, P., & Buchy, P. (2015). Chikungunya. Revue scientifique et technique (International Office of Epizootics), 34(2), 479-489.
dc.relationHwu, J. R., Kapoor, M., Tsay, S.-C., Lin, C.-C., Hwang, K. C., Horng, J.-C., . . . Neyts, J. (2015). Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antiviral research, 118, 103-109.
dc.relationHwu, J. R., Singha, R., Hong, S. C., Chang, Y. H., Das, A. R., Vliegen, I., . . . Neyts, J. (2008). Synthesis of new benzimidazole–coumarin conjugates as anti-hepatitis C virus agents. Antiviral research, 77(2), 157-162.
dc.relationINS, I. N. d. S.-., & Pública, D. d. V. y. A. d. R. e. S. (2016). SIVIGILA - Dengue. . Boletin epidemiológico semanal 36, 36. Retrieved from website: http://www.ins.gov.co/boletinepidemiologico/ Paginas/default.aspx
dc.relationJäger, S., Trojan, H., Kopp, T., Laszczyk, M. N., & Scheffler, A. (2009). Pentacyclic triterpene distribution in various plants–rich sources for a new group of multi-potent plant extracts. Molecules, 14(6), 2016-2031.
dc.relationJain, B., Chaturvedi, U. C., & Jain, A. (2014). Role of intracellular events in the pathogenesis of dengue; an overview. Microb Pathog, 69-70, 45-52. doi: 10.1016/j.micpath.2014.03.004
dc.relationJain, P., & Joshi, H. (2012). Coumarin: Chemical and pharmacological profile.
dc.relationKadir, S. L. A., Yaakob, H., & Zulkifli, R. M. (2013). Potential anti-dengue medicinal plants: a review. Journal of natural medicines, 67(4), 677-689.
dc.relationKato, F., & Hishiki, T. (2016). Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms. Viruses, 8(5), 122.
dc.relationKaur, P., & Chu, J. J. H. (2013). Chikungunya virus: an update on antiviral development and challenges. Drug discovery today, 18(19), 969-983.
dc.relationKelvin, A. A., Banner, D., Silvi, G., Moro, M. L., Spataro, N., Gaibani, P., . . . Cameron, M. J. (2011). Inflammatory cytokine expression is associated with chikungunya virus resolution and symptom severity. PLoS Negl Trop Dis, 5(8), e1279.
dc.relationKim, Y., Jung, H. J., & Kwon, H. J. (2012). A natural small molecule voacangine inhibits angiogenesis both in vitro and in vivo. Biochemical and biophysical research communications, 417(1), 330-334.
dc.relationKouloura, E., Danika, E., Kim, S., Hoerlé, M., Cuendet, M., Halabalaki, M., & Skaltsounis, L. A. (2014). Rapid Identification of Coumarins from Micromelum falcatum by UPLC-HRMS/MS and Targeted Isolation of Three New Derivatives. Molecules, 19(9), 15042-15057.
dc.relationKuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., . . . Strauss, E. G. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717-725.
dc.relationKuno, G. (2015). A re-examination of the history of etiologic confusion between dengue and chikungunya. PLoS Negl Trop Dis, 9(11), e0004101.
dc.relationLanciotti, R. S., Calisher, C. H., Gubler, D. J., Chang, G.-J., & Vorndam, A. V. (1992). Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. Journal of clinical microbiology, 30(3), 545-551.
dc.relationLani, R., Hassandarvish, P., Chiam, C. W., Moghaddam, E., Chu, J. J. H., Rausalu, K., . . . Bakar, S. A. (2015). Antiviral activity of silymarin against chikungunya virus. Scientific reports, 5.
dc.relationLee, E., Pavy, M., Young, N., Freeman, C., & Lobigs, M. (2006). Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral research, 69(1), 31-38.
dc.relationLee, T.-H., Chen, Y.-C., Hwang, T.-L., Shu, C.-W., Sung, P.-J., Lim, Y.-P., . . . Chen, J.-J. (2014). New coumarins and anti-inflammatory constituents from the fruits of Cnidium monnieri. International journal of molecular sciences, 15(6), 9566-9578.
dc.relationLim, S. P., Wang, Q.-Y., Noble, C. G., Chen, Y.-L., Dong, H., Zou, B., . . . Beer, D. (2013). Ten years of dengue drug discovery: progress and prospects. Antiviral research, 100(2), 500-519.
dc.relationLucetti, D. L., Lucetti, E. C., Bandeira, M. A. M., Veras, H. N., Silva, A. H., Leal, L. K. A., . . . Brito, G. A. (2010). Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel. Journal of Inflammation, 7(1), 1.
dc.relationLum, F.-M., & Ng, L. F. (2015). Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral research, 120, 165-174.
dc.relationLwande, O. W., Obanda, V., Bucht, G., Mosomtai, G., Otieno, V., Ahlm, C., & Evander, M. (2015). Global emergence of Alphaviruses that cause arthritis in humans. Infection ecology & epidemiology, 5.
dc.relationMartina, B. E., Koraka, P., & Osterhaus, A. D. (2009). Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews, 22(4), 564-581.
dc.relationMartínez-Gutierrez, M., Castellanos, J. E., & Gallego-Gómez, J. C. (2011). Statins reduce dengue virus production via decreased virion assembly. Intervirology, 54(4), 202-216.
dc.relationMartinez-Gutierrez, M., Correa-Londoño, L. A., Castellanos, J. E., Gallego-Gómez, J. C., & Osorio, J. E. (2014). Lovastatin delays infection and increases survival rates in AG129 mice infected with dengue virus serotype 2. PloS one, 9(2), e87412.
dc.relationMathabe, M. C., Hussein, A. A., Nikolova, R. V., Basson, A. E., Meyer, J. M., & Lall, N. (2008). Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. Journal of ethnopharmacology, 116(1), 194-197.
dc.relationMedina, F. G., Marrero, J. G., Macías-Alonso, M., González, M. C., Córdova-Guerrero, I., García, A. G. T., & Osegueda-Robles, S. (2015). Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Natural product reports, 32(10), 1472-1507.
dc.relationMeng, F., Badierah, R. A., Almehdar, H. A., Redwan, E. M., Kurgan, L., & Uversky, V. N. (2015). Unstructural biology of the dengue virus proteins. FEBS journal, 282(17), 3368-3394.
dc.relationMirsepasi, H., Persson, S., Struve, C., Andersen, L. O., Petersen, A. M., & Krogfelt, K. A. (2014). Microbial diversity in fecal samples depends on DNA extraction method: easyMag DNA extraction compared to QIAamp DNA stool mini kit extraction. BMC Res. Notes, 7(1), 1. doi: 10.1186/1756-0500-7-50
dc.relationMPS. (2013). Gestión para la vigilancia entomológica y control de la transmisión de dengue: Ministerio de Salud y Protección swocial de colombia.
dc.relationMurakami, A., Gao, G., Kim, O. K., Omura, M., Yano, M., Ito, C., . . . Ohigashi, H. (1999). Identification of coumarins from the fruit of Citrus hystrix DC as inhibitors of nitric oxide generation in mouse macrophage RAW 264.7 cells. Journal of agricultural and food chemistry, 47(1), 333-339.
dc.relationMurray, N. E. A., Quam, M. B., & Wilder-Smith, A. (2013). Epidemiology of dengue: past, present and future prospects. Clinical epidemiology(5), 299-309.
dc.relationMusa, M. A., Cooperwood, J. S., & Khan, M. O. F. (2008). A review of coumarin derivatives in pharmacotherapy of breast cancer. Current medicinal chemistry, 15(26), 2664-2679.
dc.relationNakamura, T., Kodama, N., Arai, Y., Kumamoto, T., Higuchi, Y., Chaichantipyuth, C., . . . Yano, S. (2009). Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, iNOS, TNF-α, and COX-2 expression in mouse macrophage RAW 264.7. Journal of natural medicines, 63(1), 21-27.
dc.relationNarayanaswamy, V. K., Gleiser, R. M., Kasumbwe, K., Aldhubiab, B. E., Attimarad, M. V., & Odhav, B. (2014). Evaluation of halogenated coumarins for antimosquito properties. The Scientific World Journal, 2014.
dc.relationNaturales, I. d. C. (2016). Colecciones Científicas en línea. Retrieved 22-09-2016, 2016
dc.relationNoble, C. G., Chen, Y.-L., Dong, H., Gu, F., Lim, S. P., Schul, W., . . . Shi, P.-Y. (2010). Strategies for development of dengue virus inhibitors. Antiviral research, 85(3), 450-462.
dc.relationObico, J. J. A., & Ragragio, E. M. (2014). A survey of plants used as repellents against hematophagous insects by the Ayta people of Porac, Pampanga province, Philippines. Philippines Science Letter, 7(1), 179-186.
dc.relationOcazionez, R. E., Meneses, R., Torres, F. Á., & Stashenko, E. (2010). Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Memórias do Instituto Oswaldo Cruz, 105(3), 304-309.
dc.relationOMS. (2009). Dengue. Guías para el diagnóstico, tratamiento, prevención y control. (Nueva ed.).
dc.relationOPS/OMS. (2013). Alerta epidemiológica: Fiebre por chikungunya: OPS Washington^ eDC DC.
dc.relationOPS/OMS. (2014). Alerta Epidemiológica: Fiebre por Chikungunya y Dengue en las Américas. 29 de Agosto 2014 Organización Panamericana de la Salud/Organización Mundial de la Salud.
dc.relationOPS/OMS. (2015). Dengue. Guías para la atención de enfermos en la región de las Américas (Segunda ed.).
dc.relationÖzçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical biology, 49(4), 396-402.
dc.relationPaduch, R., & Kandefer-Szerszen, M. (2014). Antitumor and antiviral activity of pentacyclic triterpenes. Mini-Reviews in Organic Chemistry, 11(3), 262-268.
dc.relationPAHO/WHO. (2016a). Number of Reported Cases of Chikungunya Fever in the Americas, by Country or Territory (Vol. Epidemiological Week / EW 32). http://www.paho.org/.
dc.relationPAHO/WHO. (2016b). Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country (Vol. Epidemiological Week / EW 29). http://www.paho.org/.
dc.relationPallant, C., Cromarty, A. D., & Steenkamp, V. (2012). Effect of an alkaloidal fraction of Tabernaemontana elegans (Stapf.) on selected micro-organisms. Journal of ethnopharmacology, 140(2), 398-404.
dc.relationParashar, D., & Cherian, S. (2014). Antiviral perspectives for chikungunya virus. BioMed research international, 2014.
dc.relationPaupy, C., Ollomo, B., Kamgang, B., Moutailler, S., Rousset, D., Demanou, M., . . . Simard, F. (2010). Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne and Zoonotic Diseases, 10(3), 259-266.
dc.relationPerera, R., & Kuhn, R. J. (2008). Structural proteomics of dengue virus. Current opinion in microbiology, 11(4), 369-377.
dc.relationPialoux, G., Gaüzère, B.-A., Jauréguiberry, S., & Strobel, M. (2007). Chikungunya, an epidemic arbovirosis. The Lancet infectious diseases, 7(5), 319-327.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsDerechos Reservados - Universidad de Santander, 2016
dc.titleEvaluación in vitro del efecto antiviral de compuestos derivados de plantas de la Región Caribe Colombiana sobre la infección por Virus Dengue y Virus Chikungunya
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución