dc.creatorRuiz Bravo, Lisette Dyanna
dc.creatorGaleano, Luis Alejandro
dc.creatorPazos Zarama, Mery Carolina
dc.date.accessioned2018-09-05T19:58:58Z
dc.date.available2018-09-05T19:58:58Z
dc.date.created2018-09-05T19:58:58Z
dc.date.issued2018-02-06
dc.identifierRuíz Bravo, L., Galeano, L. A. & Pazos Zarama, M. C. (2018). Efecto del tipo de cation interlaminar sobre la capacidad de pilarización de la mica sintética Na-2-Mica y la formación in – situ de nanoclusters de MnS. Ciencia en Desarrollo, 9(1), 119-132. https://doi.org/10.19053/01217488.v9.n1.2018.7068. http://repositorio.uptc.edu.co/handle/001/2144
dc.identifier2462-7658
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2144
dc.identifier10.19053/01217488.v9.n1.2018.7068
dc.description.abstractEn este trabajo se sintetizó la Na-2-mica por el método sol – gel y se estudió el efecto del intercambio catiónico con litio y hexadecilamonio, previo al proceso de pilarización con el policatión de Keggin de Al, el estudio se realizó variando la densidad de pilares (10, 20 y 30 meq. Al3+/g. de mica). El intercambio previo con cationes de hexadecilamonio garantizó la expansión de la interlámina; sin embargo el estudio reveló que después del tratamiento térmico en el proceso de pilarización, la interlámina no se mantiene expandida como lo hacen típicamente los minerales de arcilla pilareados, debido a la elevada carga laminar y a los sitios fuertemente ácidos de la mica. La mayoría de los materiales obtenidos formaron partículas de alúmina (Al2O3) en la interlámina, en donde el contenido de aluminio y el % CC aumentó al proporcionar la mayor densidad de pilar. Adicionalmente se estudió la formación de nanoclusters de MnS incorporados en los materiales resultantes de la pilarización, cuya incorporación se vio restringida respecto al contenido de Al, posiblemente porque la fase alúmina interlaminar impidió el acceso del H2S(g) y por ende el crecimiento de los nanoclusters, por lo que se depositaron sobre la superficie del sólido. Todos los materiales se caracterizaron principalmente por DRX, análisis elemental, estimación de la capacidad de intercambio catiónico CIC y porcentaje de carga compensada - % CC.
dc.description.abstractIn this work the Na-2-mica was synthesized by the sol-gel method and the effect of the cation exchange with lithium and hexadecylammonium, prior to the pillaring process with the Al Keggin’s polycation, was studied. The study was done by varying the density of pillars (10, 20 and 30 meq. Al3+ per gram of mica). The cation exchange with hexadecylammonium cations ensured the expansion of the interlayer; however, the study revealed that after the heat treatment in the pillaring process, the interlayer is not kept expanded, due to the high layer charge and the strongly acidic sites of mica. Most materials obtained formed particles of alumina (Al2O3) in the interlayer spacing, where the aluminum content and % CC increased as higher pillar density is provided. In addition, the formation of MnS nanoclusters in the pillared Al-2-mica was studied and the results indicated a limited growth of the nanoclusters respect to the Al content, due to amount interlayer alumina phase prevented proper diffusion of H2S(g) so they were deposited on the surface of the solid. All materials were mainly characterized by XRD, elemental analysis, analysis of the cation exchange capacity CEC and percentage of compensated charge -% CC.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.relationALBA, M., CASTRO, M., NARANJO, M., PAVON, E., (2006). Hydrothermal reactivity of Na-n-micas (n=2, 3, 4). Chemistry of Materials,18(1), 2867-2872.
dc.relationCARRADO, K., DECARREAU, A., PETIT, S., BERGAYA, F., LAGALY, G., (2006). Synthetic clay minerals and purification of natural clays. En Developments in Clay Science. Handbook of Clay Science
dc.relationKOMARNENI, S., RAVELLA, R., PARK, M., (2005). Swelling mica-type clays: synthesis by NaCl melt method, NMR characterization and cation exchange selectivity. Journal of Materials Chemistry, 15(1), 4241–4245.
dc.relationPAULUS, W., KOMARNENI, S., ROY R., (1992). Bulk synthesis and selective exchange of strontium ions in Na4Mg6Al4Si4O20F4 -mica. Nature, 357(1), 571–573.
dc.relationYAMAGUCHI, T., KITAJIMA, K., SAKAI, E., DAIMON, M., (2003). Properties of ZrO2-Pillared Fluorine Micas Synthesized Using Poly (vinil alcohol) as a Template Agent. Journal of the Ceramic Society of Japan, 111(1), 567-571.
dc.relationSHIMIZU, K., NAKAMURO, Y., YAMANAKA, R., HATAMACHI, T., KODAMA, T., (2006). Pillaring of high charge density synthetic micas (Na-4-mica and Na-3-mica) by intercalation of oxides nanoparticles. Microporus and Mesoporus Materials, 95(1), 135–140.
dc.relationPRAUS, P., MATYS, J., KOZÁK, O., (2012). Critical evaluation of montmorillonite catalytic activity by means of photodecomposition of phenol. Journal of the Brazilian Chemical Society, 23(1), 1900–1906.
dc.relationSHIBATA J, SHIMIZU K, TAKADA Y, SHICHI A, YOSHIDA H, SATOKAWA S., (2004). Structure of active Ag clusters in Ag zeolites for SCR of NO by propane in the presence of hydrogen. Journal of Catalysis, 227(2), 367–74.
dc.relationNOVAK, T., (2008). Manganese-modified porous silicates. National institute of chemistry. 19(1), 1000.
dc.relationHOUSECROFF C., SHARPE A., (2006). Química Inorgánica, 1(1). Pearson Prentice Hall.
dc.relationRUIZ. L.,(2015). Estudio del Crecimiento in – situ de nanoclusters de Mn intercalados en una mica sintética de alta carga (Na-2- mica). En Trabajo de Grado. Universidad de Nariño.
dc.relationReddy, M. R., and Perkins, H. F. (1976). FIXATION OF MANGANESE BY CLAY MINERALS. Soil science, 121(1), 21-24.
dc.relationMcBride, M., Pinnavia, T. J., and Mortland, M. M. (1975) Electron spin relaxation and the mobility of manganese (II) exchange ions in smectites: American Mineralogist 60, 66-72.
dc.relationKODAMA, T., KOMARNENI, S., (1999). Na-4-mica: Cd2+, Ni2+, Co2+, Mn2+ and Zn2+ ion Exchange. Journal of Materials Chemistry, 9(1), 533–539.
dc.relationGALEANO, L., (2011). Peroxidación catalítica de contaminantes orgánicos en medio acuoso utilizando una bentonita modificada con Al y Fe, Cu o Mn. En Tesis de Doctorado en Ciencias Químicas, Universidad de Salamanca.
dc.relationPAVÓN, E., CASTRO, M., NARANJO, M., ORTA, M., PAZOS, C., ALBA, M., (2013). Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach. American Mineralogist, 98(1), 394–400.
dc.relationALBA, M., CASTRO, M., ORTA, M., PAVÓN, E., PAZOS, C., VALENCIA J., (2011). Formation of Organo- HighlyCharged Mica. Langmuir, 27(1), 9711-9718.
dc.relationMuñoz, J. (2015). Crecimiento in-situ de nanoclusters metálicos de Fe o Mn intercalados en una bentonita previamente pilarizada con Al. Trabajo de Grado. Universidad de Nariño
dc.relationIACOMI, F., VASILESCU, M., SIMON, S., (2006). Studies of MnS cluster formation in laumontite zeolite. SurfaceScience, 600(1), 4323–4327.
dc.relationIngeominas (1999). Manual de Métodos Analíticos: Subdirección de ensayos y servicios tecnológicos, laboratorio de Geoquímica. Bogotá.
dc.relationGÓMEZ, S.P., (2007). Estudio de la influencia de la carga interlaminar de esmectitas, sobre las propiedades fisicoquímicas de arcillas pilarizadas con el sistema Al/Fe. En Trabajo de Grado en Química, Universidad de Nariño.
dc.relationPERDIGÓN, A., DEFENG, L., PESQUERA, C., GONZÁLES, F., ORTIZ, B., AGUADO, F., BLANCO, C., (2013). Synthesis of porous clay heterostructures from high charge mica – type aluminosilicates. Journal of Materials Chemistry A, 1(1), 1213 – 1219.
dc.relationPINNAVAIA, T. J., TZOU, M. S., LANDAU, S. D., RAYTHATHA, R. H., (1984). On the pillaring and delamination of smectite clay catalysts by polyoxocations of aluminum. Journal of Molecular Catalysis, 27(1), 195–212.
dc.relationVAUGHAN D.E.W., LUSSIER R.J., (1980). Preparation of molecular sieves based on pillared interlayered clays. Proceedings of the 5th International Conference on Zeolites, Naples, Rees L.V.C. Heyden, London.
dc.relationFIGUERAS, F., (1988). Pillared clays and catalysis. Catalysis Reviews: Science and Engineering, 30, 471.
dc.relationSTEUDEL A., BATENBURG L.F., FISCHER H.R., WEIDLER P.G., EMERICH K., (2009). Alteration of non-swelling clay minerals and magadiite by acid activation. Applied Clay Science, 44(1), 95–104
dc.relationTORANZO R., VICENTE M.A., BAÑARES - MUÑOZ M.A, GANDIA L.M., GIL A., 1998). Pillaring of saponite with zirconium oligomers. Microporous and Mesoporous Materials, 24(1), 173–188.
dc.relationCiencia en Desarrollo;Volumen 9, número 1 (Enero-Junio 2018)
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
dc.sourcehttps://revistas.uptc.edu.co/index.php/ciencia_en_desarrollo/article/view/7068/pdf
dc.titleEfecto del tipo de cation interlaminar sobre la capacidad de pilarización de la mica sintética Na-2-Mica y la formación in – situ de nanoclusters de MnS
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución