dc.contributorAlmanza Merchán, Pedro José
dc.creatorGómez Sierra, Luis Alberto
dc.date.accessioned2019-12-09T22:26:50Z
dc.date.available2019-12-09T22:26:50Z
dc.date.created2019-12-09T22:26:50Z
dc.date.issued2019
dc.identifierGómez Sierra, L. A. (2019). Influencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia. (Tesis de Maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2966
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2966
dc.description.abstractEn la manzana roja, la coloración de la piel y las características fisicoquímicas, son factores importantes que determinan la calidad de los frutos; estos parámetros tienen un control de orden genético pero influenciado por condiciones ambientales en etapa de maduración de frutos. El color rojo está ligado a la biosíntesis de antocianinas, que son un grupo de pigmentos de color rojo, hidrosolubles, producto del metabolismo secundario mediado por luz UV, Y ampliamente distribuidos en el reino vegetal. En el presente estudio se determinó el IUV, se cuantifico antocianinas totales y se analizaron SST en frutos maduros de manzana cv “ANNA” cultivados en diferentes altitudes en localidades de Boyacá: Soracá a 2820 m.s.n.m, Tuta a 2640m.s.n.m y Nuevo Colon a 2450 m.s.n.m. Los resultados mostraron que en la localidad a mayor altitud (Soracá), el valor promedio del IUV fue mayor (14.9) y la acumulación de antocianinas totales igualmente fue el más alto (25.4 mg/100g). Se ha encontrado una correlaciòn positiva entre la intensidad de la radiación UV, altitud y concentración de antocianinas totales, mientras que para los SST no se encontraron diferencias significativas.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad de Ciencias. Escuela de Posgrados. Maestría en Ciencias Biológicas
dc.relationAgati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., and Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J. Plant Physiol. 168, 204–212
dc.relationAguilera-Otíz, M., del Carmen Reza-Vargas, M., Chew-Madinaveita, R. G., & Meza-Velázquez, J. A. (2011). Propiedades funcionales de las antocianinas. Biotecnia, 13(2), 16-22.
dc.relationAgustí, M. 2000. Fruticultura. : E libro, ProQuest ebrary. Web. 4 May 2016
dc.relationAndersen, P. C. (2019). Low-Chill Apple Cultivars for North Florida and North, (May), 1–8.
dc.relationAppelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic engineering, 48, 218–232. doi:10.1016/j.ymben.2018.06.004
dc.relationArakawa, O. (1993). Effect of ultraviolet light on anthocyanin synthesis in lightcolored sweet cherry, cv. Sato Nishiki. J. Jpn. Soc. Hortic. Sci. 62, 543–546. Doi: 10.2 ,R.(1985).Relative effectiveness and interaction of ultraviolet-B, red and blue light in anthocyanin synthesis of apple fruit. Physiol. Plant. 64, 323–327. Doi: 10.1111/j.1399-3054.1985.tb03347.x
dc.relationÁvalos, G., E. & Pérez, C. (2009). Metabolismo secundario de plantas Reduca (Biología). Serie Fisiología Vegetal. 2 (3): 119-145 Departamento de Biología Vegetal I (Fisiología Vegetal). Facultad de Biología. Universidad Complutense. Madrid.
dc.relationAngelini, R. (2008). Il melo. Coltura & cultura. Botánica, historia e arte, alimentazione, paessaggio, coltivazione, ricerca, utillizzazione, mondo e mercato. Italia. 2-25pp.
dc.relationBallén, J. B., & Mogollón, J. F. P. (2007). Radiación ultravioleta. Ciencia y Tecnología para la Salud Visual y Ocular, (9), 97-104.
dc.relationBai, S., Saito, T., Honda, C., Hatsuyama, Y., Ito, A., & Moriguchi, T. (2014). An apple B-box protein, MdCOL11, is involved in UV-B- and temperatureinduced anthocyanin biosynthesis. Planta, (October), 1051–1062. http://doi.org/10.1007/s00425-014-2129-8
dc.relationBais, A. F., , Lucas, R. M., , Bornman, J. F., , Williamson, C. E., , Sulzberger, B., , Austin, A. T., , … Heikkilä, A. M., (2018). Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology, 17(2), 127–179. doi:10.1039/c7pp90043k
dc.relationJaakola L. (2013). New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18:477–83
dc.relationJansen, M. A. K., Gaba, V., and Greenberg, B. M. (1998). Higher plants and UVB radiation: Balancing damage, repair and acclimation. Trends Plant Sci. 3, 131–135. doi: 10.1016/S1360-1385(98)01215-1
dc.relationJia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, et al. (2001). Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188–99.
dc.relationKadomura-Ishikawa, Y., Miyawaki, K., Noji, S., and Takahashi, A. (2013). Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria×ananassafruits.J.PlantRes.126,847–857.doi:10.1007/s10265- 0130582-2
dc.relationKamiloglu, S., Capanoglu, E., Grootaert, C., & Van Camp, J. (2015). Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. International Journal of Molecular Sciences, 16(9), 21555–21574. http://doi.org/10.3390/ijms160921555.
dc.relationKataoka, I., Beppu, K., Sugiyama, A., and Taira, T. (1996). Enhancement of coloration of “Satoh-ni-shiki” sweet cherry fruit by postharvest irradiation with ultraviolet radiation. Environ. Control Biol. 34, 313–319. doi: 10.2525/ecb1963.34.313
dc.relationKim, S. A., Ahn, S. Y., Han, H. H., Son, I. C., & Yun, H. K. (2015). Expression of Genes Affecting Skin Coloration and Sugar Accumulation in Apple Fruits at Ripening Stages in High Temperatures. World Journal of Engineering and Technology, 3(03),7
dc.relationKoes, R., Verweij, W., and Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10, 236–242. doi: 10.1016/j.tplants.2005.03.002
dc.relationKondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., et al. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. J. Plant Physiol. 171, 823–829. doi: 10.1016/j.plph.2014.01.001
dc.relationKrga, I., Monfoulet, L., Konic-ristic, A., Mercier, S., Glibetic, M., Morand, C., & Milenkovic, D. (2016). Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNF a -activated endothelial cells at physiologically. Archives of Biochemistry and Biophysics, 1–9. http://doi.org/10.1016/j.abb.2016.02.006
dc.relationMa, C., Liang, B., Chang, B., Liu, L., Yan, J., Yang, Y., & Zhao, Z. (2018). Transcriptome Profiling Reveals Transcriptional Regulation by DNA Methyltransferase Inhibitor 5-Aza-2'-Deoxycytidine Enhancing Red Pigmentation in Bagged "Granny Smith" Apples (Malus domestica). International journal of molecular sciences, 19(10), 3133. doi:10.3390/ijms19103133
dc.relationKusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H., Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K., and Fernie, A. R. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 67, 354–369.
dc.relationKytridis VP, Manetas Y. (2006). Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J Exp Bot. 57:2203–10.
dc.relationLepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol. 57(1):405–30.
dc.relationLiu, Y., Che, F., Wang, L., Meng, R., Zhang, X., & Zhao, Z. (2013). Fruit coloration and anthocyanin biosynthesis after bag removal in non-red and red apples (Malus × domestica Borkh.). Molecules, 18(2), 1549–1563. http://doi.org/10.3390/molecules18021549
dc.relationLi, G., Zhao, J., Qin, B., Yin, Y., An, W., Mu, Z., & Cao, Y. (2019). ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants, 1–13.
dc.relationLi YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ. (2012). MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol. 160:1011–22
dc.relationLi, W. F., Mao, J., Yang, S. J., Guo, Z. G., Ma, Z. H., Dawuda, M. M., … Chen, B. H. (2018). Anthocyanin accumulation correlates with hormones in the fruit skin of 'Red Delicious' and its four generation bud sport mutants. BMC plant biology, 18(1), 363. doi:10.1186/s12870-018-1595-8
dc.relationLiobikas, J., Skemiene, K., Trumbeckaite, S., & Borutaite, V. (2016). Anthocyanins in cardioprotection: a path through mitochondria. Pharmacological Research. http://doi.org/10.1016/j.phrs.2016.03.036
dc.relationLópez, L., Carbone, F., Bianco, L., Giuliano, G., Facella, P., and Perrotta, G. (2012). Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. Plant Cell Environ. 35, 994–1012. doi: 10.1111/j.1365- 3040.2011.02467.x
dc.relationMa, C., Liang, B., Chang, B., Yan, J., Liu, L., Wang, Y., … Zhao, Z. (2019). Transcriptome profiling of anthocyanin biosynthesis in the peel of 'Granny Smith' apples (Malus domestica) after bag removal. BMC genomics, 20(1), 353. doi:10.1186/s12864-019-5730-1
dc.relationMalacarne, G., Costantini, L., Coller, E., Battilana, J., Velasco, R., Vrhovsek, U., … Moser, C. (2015). Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. Journal of Experimental Botany, 66(15), 4441–4453. http://doi.org/10.1093/jxb/erv243
dc.relationMa, C., Jing, C., Chang, B., Yan, J., Liang, B., Liu, L., … Zhao, Z. (2018). The effect of promoter methylation on MdMYB1 expression determines the level of anthocyanin accumulation in skins of two non-red apple cultivars. BMC plant biology, 18(1), 108. doi:10.1186/s12870-018-1320-7
dc.relationMasci, A., Coccia, A., Lendaro, E., Mosca, L., Paolicelli, P., & Cesa, S. (2016). Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 202, 59–69. http://doi.org/10.1016/j.foodchem.2016.01.106
dc.relationMöglich, A., Yang, X., Ayers, R. A., and Moffat, K. (2010). Structure and function of plant photoreceptors.Annu.Rev.PlantBiol.61,21– 47.doi:10.1146/annurevarplant-042809-112259
dc.relationMoreno-Pérez, E. D. C., Martínez-Damián, M. T., Reyes-López, D., Pérez- Mercado, C. A., Peña-Lomelí, A., & Espinosa-Robles, P. (2006). Intensidad de color y contenido de antocianinas en chile guajillo Capsicum annuum L.Revista chapingo. Serie horticultura, 12(001), 135-140.
dc.relationOnik, J. C., Xie, Y., Duan, Y., Hu, X., Wang, Z., & Lin, Q. (2019). UV-C treatment promotes quality of early ripening apple fruit by regulating malate metabolizing genes during postharvest storage. PloS one, 14(4), e0215472. doi:10.1371/journal.pone.0215472
dc.relationPeng, T., Saito, T., Honda, C., Ban, Y., Kondo, S., Liu, J. H., et al. (2013). Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiol. Plant. 148, 432–444. doi: 10.1111/ppl.12002
dc.relationPetri, J. L., Hawerroth, F. J., Leite, G. B., Couto, M., & Francescatto, P. (2012). Apple phenology in subtropical climate conditions. Phenology and Climate Change, 195–216. Retrieved from Available from: http://www.intechopen.com/books/phenology-and-climate-change/applephenology- in-subtropical-climate-conditions
dc.relationQian, M., Zhang, D., Yue, X., Wang, S., Li, X., and Teng, Y. (2013). Analysis of different pigmentation patterns in “Mantianhong” (Pyrus pyrifolia Nakai) and “Cascade” (Pyrus communis L.) under bagging treatment and postharvest UV-B/visible irradiation conditions. Sci. Hortic. 151, 75–82. doi: 10.1016/j.scienta.2012.12.020
dc.relationRafique MZ, Carvalho E, Stracke R, Palmieri L, Herrera L, Feller A, et al.(2016) Nonsense mutation inside anthocyanidin synthase gene controls pigmentation in yellow raspberry (Rubus idaeus L.). Front Plant Sci. 7:1892–904
dc.relationTaiz, L. & Blac, j. (2006). Fisiología vegetal. Volumen 2. 240pp.
dc.relationRizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106. doi: 10.1126/science.1200660
dc.relationRivas M, Rojas E, Cortes J, Madronish S 2004. Aumentos de la irradiancia solar ultravioleta debido al efecto altitudinal. Memorias del XIV simposio chileno de física, Antofagasta, Noviembre del 2004
dc.relationRivas., E, E. R., & Madronich, S. (2008). Solar Ultraviolet Index Increase With Altitude. Ingeniare. Revista Chilena de Ingeniería, 16(58), 383–388. http://doi.org/10.4067/S0718-33052008000200013
dc.relationSgherri, C., Scattino, C., Pinzino, C., Tonutti, P., & Ranieri, a. M. (2015). Ultraviolet-B radiation applied to detached peach fruit: A study of free radical generation by EPR spin trapping. Plant Physiology and Biochemistry, 96, 124–131. http://doi.org/10.1016/j.plaphy.2015.07.031
dc.relationSaldívar Iglesias, P. (2017). Cultivo del Manzano (Malus domestica).
dc.relationSansavini, S., & Ranalli, P. 2012. Manuale di ortofrutticoltura:Innovazione tecnologiche e prospettive di mercato. Edagricole. Ministero delle politiche agricole Alimentari e forestali.
dc.relationSantacruz Cifuentes, L. A. (2011). Análisis químico de antocianinas en frutos silvestres colombianos (Doctoral dissertation, Universidad Nacional de Colombia).
dc.relationSmith, J. L., Burritt, D. J., and Bannister, P. (2000). Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Ann. Bot. 86, 1057–1063. doi: 10.1006/anbo.2000.1270
dc.relationSun, Y., Qian, M., Wu, R., Niu, Q., Teng, Y., and Zhang, D. (2014). Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Tec. 91, 64–71. doi: 10.1016/j.postharvbio.2013.12.015
dc.relationTakos, A. M., et al. (2006) “Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red Apples.” Plant Physiology, vol. 142, no. 3, pp. 1216–32, doi:10.1104/pp.106.088104
dc.relationTakahashi, A., Takeda, K., & Ohnishi, T. (1991). Light-Induced Anthocyanin Reduces the Extent of Damage to DNA in UV-Irradiated Centaurea cyanus Cells in Culture, 32(4), 541–547.
dc.relationTaylor, C., Wallace, M., Monica. (2014). Anthocyanins in Health and Disease pp. 2-3
dc.relationTian, J., Zhang, J., Han, Z. Y., Song, T. T., Li, J. Y., Wang, Y. R., & Yao, Y. C. (2017). McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple. Scientific reports, 7, 43715. doi:10.1038/srep43715
dc.relationTrejo-Gonzalez, A., & Soto-Valdez, H. (1991). Partial characterization of polyphenoloxidase extracted fromAnna'apple. Journal of the American Society for Horticultural Science, 116(4), 672-675.
dc.relationTurunen M. & Latola K. (2005) UV-B radiation and acclimation in timberline plants. Environmental Pollution 137, 390– 403
dc.relationVan den Ende W & El-Esawe SK.2014. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: a dual function in abiotic and biotic stress responses? Environ Exp Bot.108:4–13.
dc.relationVan De Staaij, J., De Bakker, N. V., Oosthoek, A., Broekman, R., Van Beem, A., Stroetenga, M., Aerts, R., and Rozema, J. (2002). Flavonoid concentrations in three grass species and a sedge grown in the field and under controlled environment conditions in response to enhanced UVB radiation. J. Photochem. Photobiol. B 66, 21–29
dc.relationVictor, M., Moo, H., Mariela, I., Raciel, J., Estrada, L, Luis, C., Iván, A., Estrada, E,. Ortiz, D., Betancur, E., & Sauri, D. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico.
dc.relationVidović, M., Morina, F., Milić, S., Albert, A., Zechmann, B., Tosti, T., … Jovanović, S. V. (2015). Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiology and Biochemistry, 93, 44–55. http://doi.org/10.1016/j.plaphy.2015.01.008
dc.relationVilela, A. E., Gonzalez-Paleo, L., & Ravetta, D. A. (2011). Metabolismo secundario de plantas leñosas de zonas áridas: Mecanismos de producción, funciones y posibilidades de aprovechamiento. Ecología Austral, 21(3), 317–327
dc.relationBarnes P.W., Flint S.D. & Caldwell M.M. (1987) Photosynthesis damage and protective pigments in plants from a latitudinal arctic/alpine gradient exposed to supplemental UV-B radiation in the field. Arctic and Alpine Research 19, 21–27. Bohm B. (1998) Introduction of Flavonoids. Harwood Academic Publishers, Singapore
dc.relationVimolmangkang S, Zheng DM, Han YP, Khan MA, Soria-Guerra RE, Korban SS. (2014). Transcriptome analysis of the exocarp of apple fruit identifies lightinduced genes involved in red color pigmentation. Gene;534:78–87
dc.relationWagner, J. R., Brunzelle, J. S., Forest, K. T., and Vierstra, R. D. (2005). A lightsensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331. doi: 10.1038/nature04118
dc.relationWei, Hairong, Xin Chen, Xiaojuan Zong, Huairui Shu, and Dongsheng Gao. 2015. “Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in the Red and Yellow Fruits of Sweet Cherry ( Prunus Avium L .).” 1–20.
dc.relationWrolstad, R. E.; Heatherbell, D. A.(1974) Identification of anthocyanins and distribution of flavonoids in tamarillo fruit (Cyphomandra betaceae Cav. Sendt). J. Sci. Food. Agric, 25, 1221-1228.
dc.relationYoshida K., Mori M., Kondo T.(2009). Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat. Product. Rep. 26:884–915
dc.relationYousuf B., Gul K., Wani A.A., Singh P. (2016. )Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit. Rev. Food Sci. Nutr. 56:2223–2230
dc.relationZhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M., and Peterson, T. (2003). A maize QTL for silk maysin levels contains duplicated Mybhomologous genes which jointly regulate flavone biosynthesis. Plant Mol. Biol. 52, 1–15.
dc.relationZhang, X., Gou, M., Guo, C., Yang, H., & Liu, C.-J. (2015). Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly) phenols and Tolerance to Ultraviolet Radiation. Plant Physiology, 167(2), 337–350.
dc.relationZhang HN, Li WC, Wang HC, Shi SY, Shu B, Liu LQ, Wei YZ, Xie JH. (2016). Transcriptome profiling of light-regulated anthocyanin biosynthesis in the pericarp of Litch. Front Plant Sci. 7:963.
dc.relationZoratti, L., Jaakola, L., Häggman, H., & Giongo, L. (2015). Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLoS ONE, 10(8), 1–17. http://doi.org/10.1371/journal.pone.0135935
dc.relationBan, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H., and Moriguchi, T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48, 958–970. doi: 10.1093/pcp/pcm066
dc.relationZoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H., & Jaakola, L. (2014). Light-controlled flavonoid biosynthesis in fruits. Frontiers in plant science, 5, 534. doi:10.3389/fpls.2014.00534
dc.relationBenavides, H. (2010). Información técnica sobre la radiación ultravioleta, el índice UV y su pronóstico. Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM), Bogotá.
dc.relationBi, X., Zhang, J., Chen, C., Zhang, D., Li, P., & Ma, F. (2014). Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chemistry, 152(JUNE), 205–209. http://doi.org/10.1016/j.foodchem.2013.11.088
dc.relationBogs, J., Jaffé, F. W., Takos, A. M., Walker, A. R., and Robinson, S. P. (2007). The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143, 1347–1361. doi: 10.1104/pp.106.093203
dc.relationButelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, et al. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol. 26(11):1301–8
dc.relationCarrasco-Ríos, L. (2009). Efecto de la radiación ultravioleta-B en plantas. Idesia (Arica), 59–76. http://doi.org/10.4067/S0718-34292009000300009
dc.relationCarbonell-Bejerano, P., Diago, M. P., Martínez-Abaigar, J., Martínez-Zapater, J. M., Tardáguila, J., & Núñez-Olivera, E. (2014). Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC plant biology, 14, 183. doi:10.1186/1471-2229-14-183
dc.relationCárdenas, J; Fischer, G. (2013). Clasificación botánica y morfología de manzano, peral, duraznero y ciruelo
dc.relationCastagna, A., Dall’Asta, C., Chiavaro, E., Galaverna, G., and Ranieri, A. (2014). Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel tomato fruits. Food Bioprocess Technol. 7, 2241– 2250. doi: 10.1007/s11947-013-1214-5
dc.relationCanuto, G. A. B., Oliveira, D. R., Da Conceição, L. S. M., Farah, J. P. S., & Tavares, M. F. M. (2016). Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chemistry, 192, 566–574. http://doi.org/10.1016/j.foodchem.2015.06.09
dc.relationCasati, P., and Walbot, V. (2005). Differential accumulation of maysin and rhamnosylisoorientin in leaves of high-altitude landraces of maize after UVB exposure. Plant Cell Environ. 28, 788–799.
dc.relationChen, C., Xiao, Y. G., Li, X., and Ni, M. (2012). Light-regulated stomatal aperture in Arabidopsis. Mol. Plant 5, 566–572. doi: 10.1093/mp/sss039
dc.relationChanoca, A., Kovinich, N., Burkel, B., Stecha, S., Bohorquez-restrepo, A., Ueda, T., … Otegui, M. S. (2015). Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism, 1–16. https://doi.org/10.1105/tpc.15.00589
dc.relationChillo Heras, J. P. (2019). Evaluación de defoliantes químicos en el cultivo de manzana (Malus domestica Borkh.) cv. Anna en la granja El Romeral (Bachelor's thesis).
dc.relationCrocker, T.E., Sherman, W. B. & Wlliamson, J.G . (2016). La manzana en florida. IFAS Extencion. UNIVERSITY OF FLORIDA, 1–3.
dc.relationCoque, M; Díaz, MB; García, JC. (2012). El cultivo de manzano. Centro de investigación
dc.relationCuenca, C. E. N., & Restrepo, P. (2003). Efecto del almacenamiento de Uva Caimarona (Pourouma cecropiifolia) a diferentes temperaturas sobre los sólidos solubles y la actividad de catalasa. Revista Colombiana de Química, 32(2), 81-92.
dc.relationDelgado, L. (2003). Índice ultravioleta. Departamento de Física, Universidad de Antofagasta.
dc.relationDe Tres, V. D. M. C. (2009). Características fisicoquímicas de los frutos de tres variedades de manzanas cultivadas en la región centro-este de la provincia de Santa Fe. Revista FAVE-Ciencias Agrarias, 8, 1.
dc.relationDi Vaio, Claudio. (2005). Moderne tecniche di coltivazione della mela Annurca in Campania. Frutticultura.
dc.relationDomínguez, M. (2008). Estudio de la variabilidad morfológica en el Banco Nacional de Germoplasma del Manzano. 4.
dc.relationFalcone Ferreyra, M. L., Rius, S. P., and Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3:222. doi: 10.3389/fpls.2012.00222
dc.relationFarman, J., Gardiner, B., and Shanklin, J. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210. doi: 10.1038/315207a0
dc.relationFischer, G. &. Miranda D. 2013 Los Frutales Caducifolios En Colombia Situación Actual , Sistemas de Cultivo Y Plan de Desarrollo.
dc.relationFioletov, V., Kerr, J. B., & Fergusson, A. (2010). The UV index: definition, distribution and factors affecting it. Canadian journal of public health, 101(4), I5-I9.
dc.relationFredes, C., Montenegro, G., Zoffoli, J. P., Santander, F., & Robert, P. (2014). Comparison of the Total Phenolic Content, Total Anthocyanin Content and Antioxidant Activity of Polyphenol-Rich Fruits Grown in Chile. Ciencia E Investigación Agraria, 41(1), 9–10. http://doi.org/10.4067/S0718- 16202014000100005
dc.relationGarcés, N. B., & Soto, G. M. (2000). Producción del manzano (Malus sp. cv Anna) en el oriente Antioqueño con la abeja melífera, Apis mellifera L.(hymenoptera: apidae). Revista Facultad Nacional de Agronomía Medellín, 53(1), 849-862
dc.relationGies, P., van Deventer, E., Green, A. C., Sinclair, C., & Tinker, R. (2018). Review of the Global Solar UV Index 2015 Workshop Report. Health physics, 114(1), 84–90. doi:10.1097/HP.0000000000000742
dc.relationGiliberto, L., Perrotta, G., Pallara, P., Weller, J. L., Fraser, P. D., Bramley, P. M.,etal.(2005).Manipulationofthebluelightphotoreceptorcryptochrome2intom ato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137, 199–208. doi: 10.1104/pp.104.051987
dc.relationGilmore, J. W. (2010). Medición y predicción de la radiación solar global UV-B bajo cielos claros y sin nubes. Uniciencia, (24), 111-120.
dc.relationGiovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Ann Rev Plant Biol. 68:61– 84.
dc.relationGonzález Talize, J., Yuri Salomón, J. (Prof. G., & Del Pozo Lira, A. (Prof. G. (2012). Influencia del clon y la luz dentro de la planta sobre la concentración de pigmentos, flavonoides, capacidad antioxidante y el color en manzanas Gala. Retrieved from http://dspace.utalca.cl/handle/1950/9379
dc.relationGomez, M. S. M. (1980). Influencia de las radiaciones uv sobre el crecimiento y pigmentos liposolubles en el ciclo vegetativo de nicotiana rustica l. Y hordeum distichon l (Doctoral dissertation, Universidad Complutense de Madrid).
dc.relationGoult Kevin, K. D. & C. W. (2009). Anthocianins. Biosynthesis, Functions, and Aplications. (K. G. K. Davies, C. and F. Research, P. North, N. Zealand, Daviesk@crop.cri.nz, S. of B. Sciences, … Winefiec@lincoln.ac.nz, Eds.). New York: Springer Netherlands. http://doi.org/10.1007/978-0387-77335-3
dc.relationGould KS, Mckelvie J, Markham KR.(2002). Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 25:1261–9.
dc.relationGould, K. S. (2004). Nature ’ s Swiss Army Knife : The Diverse Protective Roles of Anthocyanins in Leaves, 5, 314–320
dc.relationGuo, N., Han, S., Zong, M., Wang, G., Zheng, S., & Liu, F. (2019). Identification and differential expression analysis of anthocyanin biosynthetic genes in leaf color variants of ornamental kale, 1–17.
dc.relationGrotewold, E. (2006). The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780.
dc.relationHarborne, J.B.; Williams, C.A. (1995). Anthocyanins and other flavonoids. Nat. Prod Rep., 639-657
dc.relationHagen, S. F., Borge, G. I. A., Bengtsson, G. B., Bilger, W., Berge, A., Haffner, K., et al. (2007). Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol. Tec. 45, 1–10. doi: 10.1016/j.postharvbio.2007.02.002
dc.relationHe, J., and Giusti, M. (2010). Anthocyanins: natural colorants with healthpromoting properties. Annu. Rev. Food Sci. Technol. 1, 163–187. doi: 10.1146/annurev.food.080708.100754
dc.relationHu, D. G., Sun, C. H., Zhang, Q. Y., An, J. P., You, C. X., & Hao, Y. J. (2016). Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple. PLoS genetics, 12(8), e1006273. doi:10.1371/journal.pgen.1006273
dc.relationHurtado, N. H., & Pérez, M. (2014). Identificación, estabilidad y actividad antioxidante de las antocianinas aisladas de la cásscara del fruto de Capulli (Prunus serotina spp capuli (Cav) Mcvaugh Cav). Información Tecnológica, 25(4), 131–140. http://doi.org/10.4067/S0718- 07642014000400015
dc.relationHoch WA, Singsaas EL, Mccown BH. (2003). Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol. 133:1296–305
dc.relationHou DX. (2002). Potential mechanisms of cancer chemoprevention by anthocyanins. Curr Mol Med. (2):149.
dc.relationJaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants, 1239–1247. https://doi.org/10.1111/j.1365-3040.2010.02154.x
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia
dc.titleInfluencia de la radiación UV-B, sobre la biosíntesis de antocianinas en frutos de manzana (Malus domestica Borkh) CV.”ANNA” para condiciones de trópico alto en Boyacá Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución