dc.contributorMuñoz Prieto, Efren de Jesús (Director de Tesis)
dc.contributorOlayo González, Roberto (Codirector de tesis)
dc.creatorLeón Pérez, Jadileyg Gabriela
dc.date.accessioned2019-03-29T15:52:22Z
dc.date.available2019-03-29T15:52:22Z
dc.date.created2019-03-29T15:52:22Z
dc.date.issued2018
dc.identifierLeón Pérez, J. G. (2018). Obtención de nanofibras Core/Shell de Acido Poliláctico/Carboximetil celulosa para su aplicación en liberación controlada de fármacos. (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2505
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2505
dc.description.abstractLas nanofibras Core/Shell son un desarrollo revolucionario en el campo de la ciencia y la tecnología. La obtención de estas fibras a nanoescala mediante la técnica de electrohilado coaxial presenta potenciales aplicaciones médicas, entre ellas, la capacidad de incorporar y liberar fármacos de manera controlada. La carga de fármacos en nanofibras utilizando la técnica de electrohilado convencional produce tasas de liberación muy altas al inicio, las cuales disminuyen con el tiempo, al contrario de la configuración core/shell en la que se pueden obtener porcentajes de liberación de la droga más controlados debido la presencia de una envoltura y/o capa que protege el fármaco de la exposición directa con el medio de liberación. Dada la necesidad de reducir las dosis de medicamento ingeridas por un paciente y prolongar su efecto; se plantea un sistema de liberación de fármacos in vitro que permita mantener una liberación sostenida de la droga durante largos periodos. El presente proyecto de investigación se enfocó en la obtención de fibras core/shell por medio de la técnica de electrohilado coaxial, utilizando polímeros biodegradables como Carboximetil Celulosa (CMC) y Ácido Poliláctico (PLA), además, se evaluó el comportamiento de las nanofibras como potenciales vehículos de liberación de Curcumina (Cur), fitoquímico que ha sido objeto de ensayos clínicos debido a su gran actividad biológica, entre las que se destacan sus propiedades antiinflamatorias, antioxidantes, antitumorales y quimiopreventivas. Posteriormente, se caracterizó la estructura química de las nanofibras de CMC/PLA-Cur mediante técnicas instrumentales tales como Microscopia Electrónica de Barrido (SEM), Espectroscopia Infrarroja con Transformada de Fourier (FTIR), Espectroscopia Raman, Análisis Termogravimétrico (TGA) y Calorimetría Diferencial de Barrido (DSC). Se determinaron las tasas de dosificación in vitro de las nanofibras mediante Espectroscopia UV-VIS y los perfiles de liberación de Cur se ajustaron al modelo matemático de Korsmeyer-Peppas, obteniéndose como resultado, un mecanismo basado en la difusión/erosión de la matriz polimérica.
dc.description.abstractThe core/shell nanofibers are a revolutionary development in the field of science and technology. The obtaining of these fibers at the nanoscale using the coaxial electrospinning technique presents potential medical applications, among them, the ability to incorporate and release drugs in a controlled manner. The loading of drugs in nanofibers using the conventional electrospinning technique produces very high release rates at the beginning, which decrease enormously over time, in contrast to the core/shell configuration in which percentages of release can be obtained more controlled drugs due to the presence of a shell and/or layer that protects the drug from direct exposure with the release medium. Given the need to reduce the doses of medication ingested by a patient and prolong its effect; an in vitro drug release system is proposed that allows to maintain a sustained release of the drug for long periods. The present research project focused on the obtaining of core/shell fibers by means of the coaxial electrospinning technique, using biodegradable polymers such as Carboxymethyl Cellulose (CMC) and Polylactic Acid (PLA), in addition, the behavior of the nanofibers was evaluated as potential release vehicles of Curcumin (Cur), a phytochemical that has been subject to clinical trials due to its great biological activity, among which its anti-inflammatory, antioxidant, antitumor and chemopreventive properties stand out. Later, the chemical structure of the nanofibers of CMC/PLA-Cur was characterized by instrumental techniques such as Scanning Electron Microscopy (SEM), Infrared Spectroscopy with Fourier Transform (FTIR), Raman Spectroscopy, Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry. (DSC). The in vitro dosage rates of the nanofibers were determined by UV-VIS spectroscopy and the Cur release profiles were adjusted to the Korsmeyer-Peppas mathematical model, obtaining as a result, a mechanism based on the diffusion/erosion of the polymeric matrix.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad de Ciencias, Escuela de Posgrados. Maestría en Química
dc.relationSilva, G. “Desarrollo de tabletas de liberación prolongada de diclofenaco sódico a partir de una matriz hidrofílica”. Tesis de maestría. Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, México. 2012.
dc.relationYao, F.; Weiyuan, J. “Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems”. Expert Opin Drug Deliv. Vol. 7, pp. 429–444, 2010.
dc.relationPertuso, S.; Navarro, G. “Matrices hidrofílicas como agentes moduladores de liberación de fármacos”. Salud Militar. Vol. 29 (1), pp. 9-17, 2007.
dc.relationMachin, R. “Síntesis y caracterización de polímeros de ciclodextrina. Aplicación a la liberación de fármacos”. Tesis doctoral. Facultad de Ciencias, Universidad de Navarra, España. 2012
dc.relationKatime, I.; Katime, O.; Katime, D. “Los materiales inteligentes en este milenio. Los hidrogeles macromoleculares: Síntesis, propiedades y aplicaciones”. Spain: Ed. Universidad del País Vasco, 1st Ed. Chapter 4. 2004.
dc.relationZamani, M.; Prabhakaran, M.; Ramakrishna, S. “Advances in drug delivery via electrospun and electrosprayed nanomaterials”. Int J Nanomedicine. Vol. 8, pp. 2997–3017, 2013.Natu, M.; De Sousa, H.; Gil, M. “Electrospun Drug-Eluting Fibers for Biomedical Applications”. Stud Mechanobiol Tissue Eng Biomater. Vol. 8, pp. 57–85, 2011.
dc.relationAnand, P.; et al. “Bioavailability of Curcumin: Problems and Promises”. Mol. Pharmaceutics. Vol. 4 (6), pp. 807-818, 2007.
dc.relationIrving, G.; et al. “Curcumin: The potential for efficacy in gastrointestinal diseases”. Best Pract Res Clin Gastroenterol. Vol. 25, pp. 519–534, 2011.
dc.relationZelen, J. “The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces”. Phys Rev. Vol. 3, pp. 69, 1914.
dc.relationCooley, J. “Apparatus for Electrically Dispersing Fluids”. U.S Patent No. 692631. 1902.
dc.relationMorton, W. “Method of Dispersing Fluids”. U.S Patent No. 705691. 1902.
dc.relationPerumal, G.; et al. “Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications”. Mater. Sci. Eng. C. Vol. 76, pp. 1196–1204, 2017.
dc.relationLi, F.; Li, X.; Li, B. “Preparation of magnetic poly lactic acid microspheres and investigation of its releasing property for loading curcumin”. J. Magn. Magn. Mater. Vol. 323, pp. 2770–2775, 2011.
dc.relationDa Silva, R.; et al. “Validation of an Ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly (L-lactic acid) nanoparticles”. Food Chem. Vol. 172, pp. 99–104, 2015.
dc.relationQiu, L.; et al. “Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-ratelithium-ion battery”. Carbohydr Polym. Vol. 102, pp. 986– 992, 2014
dc.relationGarcia, L.; et al. “Biological activity of three curcuminoids from Curcuma longa L. (turmeric) grown in Quindío, Colombia”. Rev Cubana Plant Med. Vol. 22 (1), 2017.
dc.relationLian, Y.; et al. “Fabrication and characterization of curcumin-loaded silk fibroin/P (LLA-CL) nanofibrous scaffold”. Front. Mater. Sci. Vol. 8(4), pp. 354–362, 2014.
dc.relationRamakrishna, S.; et al. “An Introduction to Electrospinning and Nanofibers”. World Scientific. 2005.
dc.relationOliveira, J.; et al. “Effect of solvent on the physical and morphological properties of poly (Lactic Acid) nanofibers obtained by solution blow spinning”. J Eng Fiber Fabr. Vol. 9 (4), pp. 117-125, 2014.
dc.relationChai, M.; Isa, I. “The Oleic Acid Composition Effect on the Carboxymethyl Cellulose Based Biopolymer Electrolyte”. JCPT. Vol. 3, pp. 1-4, 2013.
dc.relationCuiffo, M.; et al. “Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure”. Appl Sci. Vol. 7(6), pp. 579, 2017.
dc.relationRaj, S.; Shankaran, D. “Curcumin based biocompatible nanofibers for lead ion detection”. Sensor Actuat B: Chem. Vol. 226, pp. 318-325, 2016
dc.relationTobar, E.; Blanch, G.; Ruiz, M.; Sanchez, S. “Encapsulation and isomerization of curcumin with cyclodextrins characterized by electronic and vibrational spectroscopy”. Vibrational Spectroscopy. Vol. 62, pp. 292-298, 2012.
dc.relationEspinach, F.; et al. “Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties”. Compos B Eng. Vol. 134 (1), pp. 169-176, 2018
dc.relationNalbandi, A. “Kinetics of thermal degradation of polylactic acid under N2 atmosphere”. Iran Polym J. Vol. 10 (6), pp. 371-376, 2001.
dc.relationDuhoranimana, E.; et al. “Effect of sodium carboxymethyl cellulose on complex coacervates formation with gelatin: Coacervates characterization, stabilization and formation mechanism”. Food Hydrocoll. Vol. 69, pp. 111-120, 2017.
dc.relationGregorova, A. “Application of Differential Scanning Calorimetry to the Characterization of Biopolymers”. INTECH Open Access Publisher, 2013.
dc.relationSiqueira, E.; Botaro, V.; Novack, K. “Thermal and mechanical properties of films prepared with purified and unpurified carboxymethylcellulose (CMC)”. 2014.
dc.relationSanphui, P.; Rajesh, N.; Khandavilli, R.; Nangia, A. “Fast Dissolving Curcumin Cocrystals”. Cryst. Growth Des. Vol. 11 (9), pp. 4135–4145, 2011
dc.relationPages, P.; et al. “Procesado del ácido poliláctico (PLA) y de nanocompuestos PLA/montmorillonita en planta piloto: Estudio de sus cambios estructurales y de su estabilidad térmica”. Afinidad LXVI. Vol. 545, 2010.
dc.relationSiepmann, J.; Siepmann, F. “Modeling of diffusion controlled drug delivery”. J. Control. Release. Vol. 161, pp. 351–362, 2012.
dc.relationSiepmann, J.; Gopferich, A. “Mathematical modeling of bioerodible, polymeric drug delivery systems”. Adv Drug Deliv Rev. Vol. 48, pp. 229–247, 2001.
dc.relationSackett, C.; Narasimhan, B. “Mathematical modeling of polymer erosion: Consequences for drug delivery”. Int. J. Pharm. Vol. 418, pp. 104– 114, 2011.
dc.relationKost, J.; Langer, R. “Responsive polymeric delivery systems”. Adv Drug Deliv Rev. Vol. 64, pp. 327–341, 2012.
dc.relationFormhals, A. “Process and Apparatus for Preparing Artificial Threads”. U.S. Patent No.1975504. 1934
dc.relationWorld’s Leading Hydrocolloid Solutions Provider. “Carboxymethyl Celullose (CMC) Book”. CP Kelco. Disponible en: file:///D:/DOCUMENTOS/cellulosecmcbook.pdf
dc.relationSáez, V.; Hernáez, E.; Sanz, L. “Mecanismos de liberación de fármacos desde materiales polímeros”. Revista Iberoamericana de Polímeros. Vol. 5. 2004.
dc.relationCosta, P.; Sousa, J. “Modeling and comparison of dissolution profiles”. Eur J Pharm Sci. Vol. 13, pp. 123–133, 2001.
dc.relationDoshi, J.; Reneker, D. “Electrospinning Process and Applications of Electrospun Fibers”. J Electrostat. Vol. 32, pp. 151, 1995.
dc.relationBellan, L.; Craighead, H. “Applications of Controlled Electrospinning Systems”. Polym. Adv. Technol. Vol. 22, pp. 304, 2010.
dc.relationSun, Z.; et al. “Compound Core-Shell Polymer Nanofibers by Co-Electrospinning”. Adv. Mater. Vol. 15, pp.1929-1932, 2003.
dc.relationSill, T.; Von Recum, H. “Electrospinning: Applications in Drug Delivery and Tissue Engineering”. Biomaterials. Vol. 29, pp. 1989, 2008.
dc.relationFang, J.; Niu, H.; Lin, T.; Wang, X. “Applications of Electrospun Nanofibers”. Chin. Sci. Bull. Vol. 53, pp. 2265, 2008.
dc.relationDekker, A. “Electrical Engineering Materials Inc”. Prentice Hall. 1959.
dc.relationFano, M.; Chun, L.; Adler, R. “Electromagnetic Fields, Energy, and Forces”. John Wiler & Sons. 1987.
dc.relationLee, K.; Kim, H.; Khil, M.; Ra, Y.; Lee, D. “Characterization of Nano–Structured Poly (E–Caprolactone) Nonwoven Mats Via Electrospinning”. Polymer. Vol. 44, pp. 1287, 2010.
dc.relationSon, W.; Youk, J.; Lee, T.; Park, W. “The Effects of Solution Properties and Polyelectrolyte on Electrospinning of Ultrafine Poly (Ethylene Oxide) Fibers”. Polymer. Vol. 45, pp. 2959, 2004
dc.relationLannutti, J.; Reneker, D.; Ma, T.; Tomasko, D.; Farson, D. “Electrospinning for Tissue Engineering Scaffolds”. Mat. Sci. Eng C. Vol. 27, pp. 504, 2007.
dc.relationDuque, L.; Rodriguez, L.; López, M. “Electrospinning: La era de las nanofibras”. Rev. Iber. Polímeros. Vol. 14(1), pp. 10-27, 2014.
dc.relationElahi, F.; Lu, W.; Guoping, G.; Khan, F. “Core-shell Fibers for Biomedical Applications-A Review”. J Bioengineer & Biomedical Sci. Vol. 3 (1), pp. 121, 2013.
dc.relationMontini, F.; Cortez, P.; Abraham, G. Capítulo 9. Nanofibras electrohiladas para usos terapéuticos. Biomateriales aplicados al diseño de sistemas terapéuticos avanzados. Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMDP- CONICET), Argentina. 2015.
dc.relationYarin, A.; Zussman, E.; Wendorff, J.; Greiner, A. “Evolution of core-shell structure: From emulsions to ultrafine emulsion electrospun fibers”. J. Mater. Chem. Vol. 17, pp. 2585, 2017.
dc.relationRao, S.; et al. “Mimicking white matter tract topography using core–shell electrospun nanofibers to examine migration of malignant brain tumors”. Biomaterials. Vol. 34, pp. 5181–5190, 2013.
dc.relationVaseashta, A. “Nanostructured materials based next generation devices and sensors”. Nanostruct. Adv. Mater. Vol. 204, pp. 1–30, 2005.
dc.relationBlakney, A.; Krogstad, E.; Jiang, Y.; Woodrow, K. “Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures”. Int. J. Nanomed. Vol. 9, pp. 2967–2978, 2014.
dc.relationBlakney, A.; Ball, C.; Krogstad, E.; Woodrow, K. “Electrospun fibers for vaginal anti-HIV drug delivery”. Antiviral Res. Vol. 100, pp S9–S16, 2013.
dc.relationGonzalez, J.; et al. “Curcumin and curcuminoids: chemistry, structural studies and biological properties”. An. Real Acad Farm. Vol. 81 (4), pp. 278-310, 2015.
dc.relationOwens, R.; Shorr, A. “Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies”. Am. J. Health-Syst. Pharm. Vol. 66, pp S23–S30, 2009.
dc.relationChou, S.; Carson, D.; Woodrow, K. “Current strategies for sustaining drug release from electrospun nanofibers”. J Control Release. Vol. 220 (B), pp 584–591, 2015.
dc.relationSeymour, R.; Carraher, C. “Introducción a la química de los polímeros”. Editorial Reverté S.A. España. 2002.
dc.relationPuiggalí, J. “Estructura y propiedades de los polímeros”. CPDA, ETSEIB. 2009.
dc.relationBillmeyer, F. “Ciencia de los polímeros”. Editorial Reverté. 2004
dc.relationKalpakjian, S.; Schmid, S. “Manufactura, ingeniería y tecnología”. Prentrice-Hall Inc. 4°Ed. 2001.
dc.relationValera, O.; Uhrig, M. “Química sustentable”. Ediciones UNL, Ed. 5, pp. 104-106, 2004.
dc.relationEnviromental and Plastic Industry Council. “Biodegradable Polymers: a Review”. Technical Report. 2000. Disponible en: http://www.resol.com.br/textos/Biodegradable%20polymers.pdf
dc.relationHeinze, T.; Pfeiffer, K. “Studies on the synthesis and characterization of carboxymethylcellulose”. Angew. Makromol. Chem. Vol. 266 (1), pp. 37–45, 1999.
dc.relationGaihre, B.; Jayasuriya, A. “Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering”. Mater. Sci. Eng. Vol. 69, pp. 733–743, 2016
dc.relationDogsa, I.; et al. “Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering”. Carbohydr Polym. Vol. 111, pp. 492–504, 2014.
dc.relationMondal, I.; Yeasmin, S.; Rahman, S. “Polymer Preparation of food grade carboxymethyl cellulose from corn husk agrowaste”. Int. J. Biol. Macromol. Vol. 79, pp. 144–150, 2015.
dc.relationDapia, S.; Asunción, C.; Santos, V.; Parajo, J. “Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached Milox pulps”. Food Hydrocoll. Vol. 19, pp. 313–320, 2005.
dc.relationCancela, M.; Alvarez, E.; Maceiras, R. “Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology”. J Food Eng. Vol. 71, pp. 419–424, 2005.
dc.relationRao, Z.; et al. “Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system”. Int. J. Biol. Macromol. Vol. 107, pp. 1184–1192, 2018.
dc.relationRubio, M.; Hernández, M. “Medicina estética: Claves, abordajes y tratamientos actuales”. Editorial Formación Alcalá. 2017.
dc.relationDa Silva, D. “Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems”. Chem. Eng. J. Vol. 340, pp. 9–14, 2018.
dc.relationSuriderp, C. “Ullman's Encyclopedia of Industrial Chemistry: Lactic acid”. De Barbara Elvers. 5 Edition, pp. 97-104, 1995
dc.relationSerna, L.; Rodríguez, A.; Albán, F. “Ácido Poliláctico (PLA): Propiedades y Aplicaciones”. Ingenieria y Competividad. Vol. 5 (1), 2003.
dc.relationChem Systems. “Biotech Routes to Lactic Acid/Polylactic acid”. 2002. Disponible en: http://thinking.nexant.com/sites/default/files/report/field_attachment_abstract/200205/00-S3-abs.pdf
dc.relationHerryman, M.; Blanco, G. “Ácido láctico y poliláctico: Situación actual y tendencias”. Red de Revistas Científicas de América Latina, el Caribe, España y Portugal. Vol. 39, pp. 49-59, 2005.
dc.relationTyler, B. “Polylactic acid (PLA) controlled delivery carriers for biomedical applications”. Adv Drug Deliv Rev. Vol. 107, pp. 163–175, 2016.
dc.relationElsawy, M.; et al. “Hydrolytic degradation of polylactic acid (PLA) and its composites”. Renew Sust Energ Rev. Vol. 79, pp. 1346–1352, 2017
dc.relationGallardo, A.; Vázquez, B.; Elvira, C.; San Román, J. “Sistemas de liberación controlada de medicamentos”. Biomateriales. Ed. R. Sastre, S. de Aza, J. San Román. CYTED, pp. 449-471, 2004.
dc.relationMethods for electrospinning core-shell fibers. Disponible en: http://electrospintech.com/coreshellmethod.html#.V-_bKIjhDIU.
dc.relationPérez, R.; Kim, H. “Core–shell designed scaffolds for drug delivery and tissue engineering”. Acta Biomater. Vol. 21, pp. 2–19, 2015.
dc.relationBueche, F. “Viscosity, self-diffusion, and allied effects in solid polymers”. J. Chem. Phys. Vol. 20, pp. 1959–1964, 1952.
dc.relationChakraborty, S.; Liao, I.; Adler, A.; Leong, K. “Electrohydrodynamics: A facile technique to fabricate drug delivery systems”. Adv Drug Deliv Rev. Vol. 61, pp. 1043, 2009.
dc.relationFreiberg, S.; Zhu, X. “Polymer microspheres for controlled drug release”. Int. J. Pharm. Vol. 282, pp. 1–18, 2004.
dc.relationXue, R.; Behera, P.; Viapiano, M.; Lannutti, J. “Rapid response oxygen-sensing nanofibers”. Mater. Sci. Eng. C. Vol. 33, pp. 3450–3457, 2013
dc.relationSperling, L.; Reis, K.; Pranke, P.; Wendorff, J. “Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery”. Drug Discov Today. Vol. 21, pp. 1243–1256, 2016.
dc.relationFernández, J.; González, R.; Fuentes, G. “Cinética de liberación de cefalexiana desde un biomaterial compuesto por HAP-200/POVIAC/CaCO3”. An. R. Acad. Nac. Farm. Vol. 75 (3), pp. 345-363, 2009.
dc.relationViseras, T. “Desarrollo galénico de preparados obtenidos por interacción del ácido 5-amino salicílico con hallosyta”. 2008
dc.relationAggarwal, B.; et al. Chapter 10: Curcumin: Biological and Medicinal Properties. Turmeric: the genus Curcuma. 2006.
dc.relationPriyadarsini, K. “The Chemistry of Curcumin: From Extraction to Therapeutic Agent”. Molecules. Vol. 19, pp. 20091-20112, 2014.
dc.relationBagchi, A. “Extraction of Curcumin”. IOSR-JESTFT. Vol. 1 (3), pp. 01-16, 2012.
dc.relationBasnet, P.; Skalko-Basnet, N. “Curcumin: A Challenge in Cancer Treatment”. JNPA. Vol. 26 (1), 2012.
dc.relationGarcía, N. “Electrospinning una Técnica Fascinante para la Obtención de Nanofibras Poliméricas”. Revista de plásticos modernos: Ciencia y tecnología de polímeros. Vol. 677, pp. 166-173, 2013.
dc.relationYih TC, Al–Fandi M. “Engineered Nanoparticles as Precise Drug Delivery Systems”. J. Cell. Biochem. Vol. 97, pp. 1184, 2006.
dc.relationSáez, V.; Hernáez, E.; Sanz, L. “Sistemas de liberación controlada de medicamentos”. Revista Iberoamericana de Polímeros. Vol. 3, 2002.
dc.relationRamlia, N.; Wonga, T. “Sodium carboxymethylcellulose scaffolds and their physicochemical effects on partial thickness wound healing”. Int. J. Pharm. Vol. 403, pp. 73–82, 2011.
dc.relationRokhade, A.; et al. “Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine”. Carbohydr Polym. Vol. 65, pp. 243–252, 2006.
dc.relationHoenich, N. “Cellulose for medical applications: past, present, and future”. BioResources. Vol. 1, pp. 270–280, 2006.
dc.relationSerrano, M.; et al. “Controlled release and antioxidant activity of Roselle (Hibiscus sabdariffa L.) extract encapsulated in mixtures of carboxymethyl cellulose, whey protein, and pectin”. LWT-Food Sci Technol. Vol. 50, pp. 554–561, 2013.
dc.relationNg, S.; Jumaat, N. “Carboxymethyl cellulose wafers containing antimicrobials: A modern drug delivery system for wound infections”. Eur J Pharm Sci. Vol. 51, pp. 173–179, 2014.
dc.relationAgarwal, T.; et al. “Calcium alginate-carboxymethyl cellulose beads for colon-targeteddrug delivery”. Int. J. Biol. Macromol. Vol. 75, pp. 409–417, 2015.
dc.relationJuncu, G., et al. “Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films”. Int. J. Pharm. Vol. 510, pp. 485–492, 2016.
dc.relationSiviero, A.; et al. “Curcumin, a golden spice with a low bioavailability”. J. Herb. Med. Vol. 5, pp. 57–70, 2015.
dc.relationMadusankaa, N.; De Silvaa, N.; Amaratungaa, G. “A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media”. Carbohydr Polym. Vol. 134, pp. 695–699, 2015.
dc.relationPlyduang, T.; et al. “Carboxymethylcellulose–tetrahydrocurcumin conjugates for colon-specific delivery of a novel anti-cancer agent, 4-amino tetrahydrocurcumin”. Eur. J. Pharm. Biopharm. Vol. 88, pp. 351–360, 2014.
dc.relationLi, Z.; et al. “Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin”. Food Res Int. Vol. 75, pp. 98–105, 2015.
dc.relationPriya, P.; Mohan, R.; Vasanthakumar, V.; Raj, V. “Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer”. Arab. J. Chem. 2017.
dc.relationLi, B.; et al. “Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices”. Carbohydr Polym. Vol. 98, pp. 1108– 1116, 2013.
dc.relationDewangan, A.; et al. “Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats”. J Drug Deliv Sci. Vol. 41, pp. 269-279, 2017.
dc.relationTrang, M.; el al. “A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning”. Adv. Nat. Sci.: Nanosci. Nanotechnol. Vol. 3, pp. 4, 2012.
dc.relationYang, J.; et al. “Preparation and Characterization of Electrospinning PLA/Curcumin Composite Membranes”. Fiber Polym. Vol. 11 (8), pp. 1128-1131, 2010.
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2018 Universidad Pedagógica y Tecnológica de Colombia
dc.titleObtención de nanofibras Core/Shell de Acido Poliláctico/Carboximetil celulosa para su aplicación en liberación controlada de fármacos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución